
Tersus Tutorial

Table of Contents
Stage 1 - Introduction...6

About the Tersus Platform..6
About this Tutorial..6

Document Conventions..7
Using the Tutorial..7
The Sample Application..8

Stage 2 – Modeling a Basic Display..9
Stage Goals..9

Tersus Concepts Covered...9
Application Functionality Modeled..9

The Tersus Studio..9
Create a Simple Web Application...11

Start Modeling – Create a Form for Entering a Requisition...11
Create a View (Open Requisitions)..12
Add a Button (New Requisition)..14
Create a Popup (Enter New Requisition)..15
Add Display Elements to the Popup...17
Rename a model...19

Completing Stage 2...21
Importing a Sample Project..21

See It Live...30
Stage 3 – Modeling the Logic behind the Screen..31

Stage Goals..31
Tersus Concepts Covered...31
Application Functionality Modeled..31

Model Application Logic..31
Define a Data Structure..31
Use a Process Template (to generate a record identifier)...33
Create a Flow..34
Use a Display Data Element (to retrieve user input)..34
Use the Insert Template (to store data in the database)..36
Use the Close Window Template (and make sure processes occur in the right order)..................37

Completing Stage 3...40
See It Live...42

Stage 4 – Modeling a Simple Table Display..43
Stage Goals..43

Tersus Concepts Covered...43
Application Functionality Modeled..43

Model a Tabular Display of Data..44
Create a Table Display..44
Reuse a Data Structure to Define Table Contents..45
Use Action models to Define a Process (populating the display table with data from the database)
..48

1

Define a Sub-Process (generating the table data element in memory)...49
Use the Find template (to retrieve data from the database)..50
Use a Display Data Element (to define the data type & create the table data element).................50
Output Data from the Sub-Process...51
Use a Display Data Element (to output data to the display)...52
Reuse the Action Process (to refresh the table display)...53

Completing Stage 4...56
See It Live...59

Stage 5 – Modeling Choosers and Using Constants..60
Stage Goals..60

Tersus Concepts Covered...60
Application Functionality Modeled..60

Model a Chooser...60
Use a Row Element for Better Formatting (of the popup display)...60
Add a Chooser Display (to the popup)...61
Create an Initialization Process (that populates the chooser with values)......................................62
Use Constants (to define the values displayed in the chooser)...63
Add a Field to the Data Structure...65
Reuse Means Faster Modeling (display & database structure are automatically updated)............66

Completing Stage 5...67
See It Live...67

Stage 6 – Modeling an Additional View and Updating Data...68
Stage Goals..68

Tersus Concepts Covered...68
Application Functionality Modeled..68

User Modeling...68
Add a View to the Model..68
Reuse a Display Element (Requisition List)...69
Recreate a Process when it cannot be Reused in full (to populate the requisition list)..................70
Add a Button (that updates an existing record, marking it Approved)...72
Retrieve the Selected Row from a Table Display...73
Change a Field’s Value...74
Commit the Updated Record to the Database and Refresh the Table Display...............................76

Completing Stage 6...78
See It Live...79

Stage 7 – Re-factoring - Changing a Process to Enhance Reusability...80
Stage Goals..80

Tersus Concepts Covered...80
Application Functionality Modeled..80

Re-factor an Existing Model...80
Group Reusable Elements in a Process..81
Finish Re-factoring (replacing elements and flow with the new process)......................................83
Reuse part of the Re-factored Model (Cancel Requisition)..84

Completing Stage 7...87
See It Live...90

Stage 8 – Filtering Retrieved Data...91
Stage Goals..91

Tersus Concepts Covered...91

2

Application Functionality Modeled..91
User Modeling...91

Add a Trigger to the Find Process (to specify a value by which to filter)......................................92
Use Remove Flow (to clear the table)..93
Opening Models in a Separate Editor Window..95
Remove an Element from the Model..96
Understanding Model Packaging and Naming...97
Use the Advanced Find template (to filter records using a complex criteria)................................99

Completing Stage 8...101
See It Live...106

Stage 9 – Arranging Views into Perspectives..107
Stage Goals..107

Tersus Concepts Covered...107
Application Functionality Modeled..107

User Modeling...107
Add a Perspective (Employee)...109
Remove the Default Perspective...110
Add an additional Perspective (Manager)..110

Completing Stage 9...111
See It Live...119

Stage 10 – Importing Data from Excel..120
Stage Goals..120

Tersus Concepts Covered...120
Application Functionality Modeled..120

User Modeling...122
Use a File Input Field (to select the spreadsheet file)...122
Use a Load Excel Table Template (to extract data rows)...123
Define the Data Structure of Rows extracted from the Spreadsheet..126
Using a Text Manipulation Template (to concatenate text values)..129
Completing the Import process...130

Completing Stage 10...134
See It Live...135

Stage 11 – Controlling Table Display..136
Stage Goals..136

Tersus Concepts Covered...136
Application Functionality Modeled..136

User Modeling...136
Use a Table Template...136
Use Number/Text/Date Display Templates ...137
Populate the Table (with requisitions)..138

Completing Stage 11...142
See It Live...144

Stage 12 – Controlling Application Flow..145
Stage Goals..145

Tersus Concepts Covered...145
Application Functionality Modeled..145

User Modeling...145
Use a Branch Template...145

3

Use an Alert Template (to display an alert to the user)..147
Display a Popup Conditionally...149

Completing Stage 12...151
See It Live...157

Stage 13 – Modeling Relational Data..158
Stage Goals..158

Tersus Concepts Covered...158
Application Functionality Modeled..158

User Modeling...159
Use a Chooser Based on a Data Structure..159
Use a Service Template (when a process must run on the server)...161
Define a Database Record (for the purchase order)..163
Positioning an Ancestor Reference Correctly (not in a service)...164
Populate the Purchase Order Record (with purchase order details)...166
Update the Requisition...170
Use a <Done> Exit (to specify the order of execution)..172

Completing Stage 13...173
See It Live...176

Stage 14 – Displaying Multiple (Linked) Tables...177
Stage Goals..177

Tersus Concepts Covered...177
Application Functionality Modeled..177

User Modeling...178
<On Click> Process (to execute a process when a row is clicked)..178
Add a Process (to calculate PO aggregates for each requisition)...185
Use a Count Template (to count the number of records found by Find)......................................187
Use a Sum Template (to calculate the total price of a requisition)...188
Use a Refresh Template (to refresh data in your display)..189

Completing Stage 14...191
See It Live...192

Appendix A – Tersus Studio Features and Tools..193
Appendix Goals...193
The Eclipse Platform...193
Creating a New Project..194
Familiarizing Yourself with the Model Editor..197

The Palette..197
Inserting a New Element to the Model...200
Selecting an Element..200
Moving an element...200
Resizing an element..200
Drill-down..201
Zoom-in/out..201
Undo/Redo..201

The Outline..202
Synchronization with the Model Editor..202
Double-Click Behavior...202
Drag-and-Drop Behavior..202

The Repository Explorer...203

4

Finding your way in the Repository...203
Double-click Behavior..204
Drag-and-drop Behavior...204

The Repository Explorer vs. the Outline...204
The Embedded Application and Database Servers...205

Appendix B – Visual Debugging...206

5

Stage 1 - Introduction

About the Tersus Platform

Welcome to the Tersus Platform.

With Tersus, you can easily create web applications by drawing diagrams instead of writing
code.

The Tersus technology has already been used successfully to create a range of software
solutions, from small tactical applications to high-end, mission critical systems for processing
financial transactions.

Tersus is especially appropriate for composite applications assembled from a combination of
built-in components, self developed components and Web Services.

The Tersus Platform comprises three major components:
• The Tersus Studio, an extension of the Eclipse platform, used by modelers (developers

and business experts) to graphically define the functionality of applications;
• The Tersus Model Libraries, containing building blocks for assembling applications;
• The Tersus Server, which executes the modeled solutions and performs the required

database updates (can run over a J2EE application server).

Creating an application is done by defining a Model Hierarchy, in which each model is
composed of lower level components. The developer starts at a top-level diagram representing
the whole system, and then continues with an iterative top-down refinement process – drilling
down from each model to specify its components. Employing an “infinite drawing board” that
represents graphically the whole model hierarchy, it is possible for the developer to fully and
precisely specify the required business logic in a visual and intuitive manner.

Deploying the application, once modeled, is immediate. The models are saved as a hierarchy of
XML files, which are read by the Tersus Runtime Engine. The engine then performs the
functionality defined by the models at all levels – user interface, server-side processing and
database operations. It is possible to record the full details of the execution if tracing is required
for auditing purposes or for root cause analysis of problems.

Maintaining an existing application is done by amending its model – changing the business
flow, adding new components, or disabling redundant components. Upon completion of the
required modifications, the application can be redeployed immediately.

About this Tutorial

This tutorial outlines the development of a complete sample application - a Purchase Requisition
Management system - using the Tersus Modeling Tool.

The tutorial provides a step-by-step, hands-on example of the development of such a system,
starting with an employee issuing a requisition, and concluding with the delivery of requested
items.

http://www.eclipse.org/

Within minutes, and then at each step as you progress with building the application, you can
start the application from your browser using the Tersus Runtime Engine.

Document Conventions

This tutorial uses the following style conventions:

Convention Description

Double-click the root model Step-by-step modeling instructions you may
follow and perform

View Objects available in the Tersus Modeling Tool

New Requisition Recommended names for models you create

A data structure is … Noteworthy information which elaborates
beyond the direct subject at hand

Using the Tutorial

The tutorial is divided into multiple stages, each covering several new concepts of the Tersus
development methodology.

In each stage, the tutorial covers:

- The development process (modeling, or "how to model it");

- The resulting application definition (model, or "how the model looks when done"); and

- The outcome (application, “what the user gets to use”).

Each stage is accompanied by a pre-built, functioning sample project implementing all stages
up-to and including the current stage.

The aim of the sample projects is two-fold:

1. Provide a consistent reference when reading through the tutorial stages.

2. Provide additional functionality which is similar to functionality modeled in detail in the
tutorial. You can use the samples and skip the modeling of the additional functionality,
or decide to model it yourself (the additional functionality is described in short rather
than in a detailed step-by-step manner, but given what you have done earlier in the same
stage, these descriptions should be sufficient for you to model the functionality yourself).

It is highly recommended that you follow the tutorial stage by stage and in the order
outlined.

The Sample Application

Acme corp. wants to replace its manual, paper-intensive purchase requisition process with a
computerized web-based system that will allow employees to request the purchase of products
(e.g. PCs, furniture, office supplies).

A purchase requisition always goes through, at the very least, the following steps:

1. An employee enters a new requisition;

2. The requisition is approved/rejected by the employee's manager;

3. The approved requisition is handled by a purchaser, who issues a purchase order;

4. When the items ordered are delivered, the requisition is considered fulfilled and closed.

Stage 2 – Modeling a Basic Display

Stage Goals
This stage introduces the Tersus Studio.

You will learn how to create a new Tersus project

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Model, Display, Template. Model vs. Element Name.

Modeling techniques: Creating & managing the display. Renaming a model.

Useful display templates: View, Button, Popup, Label, Text area.

Application Functionality Modeled

In this stage you will model a browser form for entering requisitions.

The resulting web application will include a button that opens a pop-up form used to enter a new
requisition, similar to the following:

The Tersus Studio

The following screenshot displays the default appearance of the Tersus Studio. It includes the
Model Editor (with integrated Palette) on the right, and a tabbed view containing the

Repository Explorer and Outline on the right.

If you want to learn more on the Tersus Studio before starting your first project, refer to
Appendix A, which covers the following topics:

• Tersus Studio and the Eclipse Platform

• The Palette

• Inserting New Elements to the Model

• Selecting, Moving and Resizing Elements

• Drill-down

• Zoom-in/out

• Undo/Redo

• The Outline

• The Repository Explorer

• The Application Server

Create a Simple Web Application
We start by creating a new application project:

Select File -> New -> Tersus Project.

Note that Tersus Project is the first option in the New sub-menu, followed by Project..., which is a
generic eclipse option (see Appendix A for more information).

Enter a Project name for your new project: Tutorial.

Select the Template: Legacy Navigation

Press the Finish button.

Start Modeling – Create a Form for Entering a Requisition

To start modeling we need to open the application root model in the model editor.

If you've just created a new project, Tutorial, it should already be open in the model editor. If
not, do the following:

Locate the Tutorial project root (folder) in the Repository Explorer view, and double-
click it.

This should open a new editor window, which should look as in the following screenshot,
displaying a yellow rectangle, representing the application. Since we have not modeled anything
yet, the rectangle is empty, except for its name:

Create a View (Open Requisitions)

A web application is something you can see in your browser, so first we need to define a View.
A View model defines what is displayed in the browser, and contains other display elements
(labels, buttons, tables, etc.).

To create the View called Open Requisitions (showing all your open requisitions), do the
following:

In the Palette (to the right of the model editor), make sure that the Display category is
open (if it is not, just click it to open).

Click on the View template () to select it.

Notice that when you now move the mouse pointer over the editor, it changes to signify where it

is legal to drop View (by displaying a small, gray rectangle).

Position the mouse pointer inside the Tutorial root model and click to insert the view.

A view model is created, with the default name View, and the editor enables you to rename it
immediately, as follows:

Type Open Requisitions and press [Enter] when finished.

If the editor exits name edit mode before you have changed it, you can rename it as follows:
1. Make sure the view model is selected
2. Open the Rename dialog by pressing [F2] (or right-click -> Rename)
3. Enter the new name , Open Requisitions, in the Element name (local): field
4. Click Finish

For more details regarding rename and the Rename dialog, see the Rename a model section of this
stage, below.

The simple model you have just created should be similar to the following:

The Open Requisitions view (the green/blue rectangle) is now a sub-model of the root model
Tutorial (the yellow rectangle).

Any model in the hierarchy may contain any number of sub-models.

Note that the model screenshots provided in this tutorial may differ from the models you create, mainly
because of differences in positioning and sizing of elements in the model, as well as the fact that
elements which contain other elements may be expanded (marked with) or collapsed (). This
difference does not have an effect on application functionality, except in the case of display models, as
explained later in this stage.

Add a Button (New Requisition)

Let's continue with the modeling of the Open Requisitions view. We will now add a New
Requisition button (allowing the user to enter a new requisition in a popup form).

Select the Button template () from the Display category in the palette (by clicking on
the template).

Insert it into the Open Requisitions view (by clicking inside Open Requisitions).

Name it New Requisition (Type New Requisition).

The model should now look similar to the following:

Both the Repository Explorer and the Model Editor captions display an asterisk next to them (e.g.
*Tutorial). This indicates that the latest changes have not been saved.

Save your work by clicking on the toolbar.

Whenever you save your model, the Tersus Studio checks (validates) your models. If any errors are
found a message will appear, and the errors will be displayed in the Validation view. See Completing
Stage 12 for more details regarding validation.

Although we have modeled very little, we can already have the first glimpse of our application
in the browser:

Click on the Launch the application button in the studio's main toolbar to load your
application in the embedded Tersus Server and open it in a web-browser.

If the Launch the application button is disabled, clicking on the model editor should enable it.

Your browser should display a page similar to the following:

Notice that the Open Requisitions view appears as a single tab. Later on, when you insert
additional views, they will appear as additional tabs. Inside the view, we see the New
Requisition button.

Switch back to the Tersus Studio. You may leave the browser open in the background.

Create a Popup (Enter New Requisition)

People often wonder what happens in the computer when they press a button. It would be nice if

we could look through the button and see the insides of the application's logic, and this is
exactly what Tersus let’s you do by using a “zoom in” technique – modeling "within" the button
the actions that take place when the button is pressed.

So let’s zoom into the New Requisition button and model the popup form that appears when the
button is clicked:

Double-click the New Requisition button to zoom into it.

Select the Display/Popup template () from the palette.

Insert it into the New Requisition element.

Name it Enter New Requisition.

Your New Requisition button model should now look similar to the following:

The Popup template is an example of a template which provides additional pre-built functionality out of
the box.
In the case of a Popup the pre-built functionality consists of:
1. A Footer, which will cause its contents to be displayed at the bottom part of the popup.
2. An OK button, which does nothing at the present.
3. A Cancel button, which contains a Close Window model, so that when Cancel is pressed the popup
will close
In general, you are free to change (or remove) this functionality as you see fit.

Save your work .

Now let's see how your application looks when deployed in the browser:

Switch back to the browser.

The browser recognizes that the application has changed since the last time it was loaded into
browser and reloads the application automatically.

Once reload has finished, press the New Requisition button

You should see the following:

Click the Cancel button to verify that it does close the popup as expected.

Add Display Elements to the Popup

We need a place for the user to type the requisition details, and this should suffice to begin with.

First, create a label (“Description:”), which prompts the user to describe the requisition:

Double-click the Enter New Requisition popup to zoom into it.

Select the Display/Label template () and drop it into the upper part of the popup.
Name it Description: (the colon being part of the name).

Next, insert a text area element in which the user can type the description of his/her requisition:

Select the Display/Text Area template () and drop it to below the label. Name it
Description.

Your model should now look similar to the following:

Save your work, and switch back to the browser.

Your popup should look as follows:

Note that the order by which display elements appear in the form is determined by the relative positions
of the corresponding sub-models in the popup’s model. In general, the order is governed by a top-to-
bottom, left-to-right rule (as if reading English).

More generally, the way display elements are arranged in the model hierarchy defines how they show on
the screen. We have already seen two different examples:
1. Placing a popup inside a button causes the popup to appear when the button is pressed.
2. Positioning display elements next to each other (inside a parent model) defines the order in which they
are displayed on the screen.

Rename a model

The Enter New Requisition popup contains the pre-built button, OK, which we shall use in the
next stages to submit the new requisition. Let's rename it accordingly:

Zoom to the OK button in your model.

Next, either

Right-click it and select Rename from the menu.

or

Click to select the model, and press [F2].

This will open the Rename dialog:

Enter Submit replacing OK, and click Finish.

The Rename dialog is used to specify two different names for the model element you are renaming, an
Element Name and a Model Name.
Model Name is the shared name of a reusable model (see Stage 4 for further details regarding reuse). A
model name must be unique in a given package.
Element Name is the local name of a model. An element name must be unique in a given parent. In the
case of display models (such as the View we have just created), the element name is the name which will
be displayed to the user.
Usually, the names are identical, and in these cases, the Keep the model name and element name
equal check-box is checked by default so that both names are changed simultaneously.
There are however, situations in which a certain element or model name cannot be used, and in these
cases you may decide to uncheck the check-box, and set different names. For further details, see the

discussion regarding automatically generated names in Stage 14.
The Keep package name equal to model name check box appears when the model you are renaming
has the same name as the package containing it. It is checked by default, but you may clear it if you do
not wish to rename the package.

Your model should now look similar to the following:

The button we have renamed, still displays its original name in angled brackets (<<OK>>). This is a
reminder that the button originates from the Popup template. It has no real effect, and will not be
displayed at runtime, therefore you may ignore it.

Save your work, and switch back to the browser.

Your popup should look as follows:

Completing Stage 2

We have completed modeling of the form, however pressing the Submit button does not save
the data anywhere. We shall handle this in the next stage.

Importing a Sample Project

We shall now import a ready-made sample project, Tutorial 2-3. This sample project contains
all the functionality modeled thus far, and will serve as the basis for the next stage of the
tutorial:

Select File| Import… to open the Import wizard.

Select Existing Project into Workspace as the import source.

Click Next>.

Make sure the Select archive file: radio button is selected, and click the Browse…
button to open the Select archive containing the projects to import dialog.

By default the dialog should open in the workspace folder which contains the sample project
archives.

Select (or double-click) the samples.zip archive.

Note the following:
The samples.zip archive contains sample projects for all stages of the tutorial. You can import as many
samples as you wish, but it is recommended that you import only the sample you need (Tutorial 2-3 at
this stage).
The full path of the archive you selected may be different, depending on the location in which you
installed Tersus.

Click the Deselect All button.

Check the check box next to the Tutorial 2-3 project.

Click Finish to import the project.

The wizard will import the project, and add it to the Repository Explorer.

Double-click the Tutorial 2-3 project to open its root model in the model editor.

Alternatively, expand the imported project, Tutorial 2-3, and the Tutorial 2-3 package found in it, and
double-click the . root model in it.

Doing this will open the model in a new model editor window.

Note that the project you previously worked on, Tutorial, is still open for editing in a separate
model editor appearing as the left-most tab, in the screenshot above), and in the application
server.

Switch back to the Tutorial model editor, by clicking on the Tutorial tab.

Click on the Stop the application button in the studio's main toolbar to unload your
application from the embedded Tersus Server.

Close the browser window running the application.

Close the Tutorial model editor by pressing the Close button on the editor's tab:

The model editor should now look as follows:

It is also recommended that you close the (old) Tutorial project you created at the beginning of
this stage:

In the repository explorer, right-click the Tutorial project.

Select Close Project from the menu.

The repository explorer should look similar to the following:

You may now proceed to Stage 3, in which we will implement a process which saves the
submitted requisition to the database.

See It Live

Object 1

Click here to open the live project in a separate window.

http://tutorials.tersus.com/2-3/

Stage 3 – Modeling the Logic behind the Screen

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Data-element, Data Types, Flow, Slot, Display Data-
element, Ancestor Reference, Reserved Names,
Prototypes

Modeling techniques: Retrieving user input from the display, Storing data in a
database table.

Useful process templates: Sequence, Insert

Application Functionality Modeled

In this stage you will model some basic application logic - retrieving the requisition description
entered by the user (through the popup form) and saving it in a database table.

This stage’s modeling should be performed in the Tutorial 2-3 project, you imported at the end of the
previous stage.

Model Application Logic

In the previous stage we learned how to model a form for simple data entry. We mentioned that
one crucial thing was missing – saving the data entered by the user.

So now, let's model the saving of the requisition’s description when the user clicks the Submit
button.

As mentioned above, Tersus modeling employs a zoom-in technique in which application logic
is defined "inside" the display element which invokes it. In our case, saving of the requisition’s
details should be performed when the button is clicked, so it will be modeled inside the Submit
button.

Zoom into the Submit button by double-clicking on it in the model editor (or in the
Outline view).

Define a Data Structure

We will now define a data structure to store the details of a requisition:

Select the Data Types/Database Record template () and drop it into the button. Name
it Requisition.

A data structure is a collection of data items (either “primitives” like a number or a date, or other data
structures). Data structures appear in the model as gray rectangles.

You may have noticed a Data Structure template appearing next to the Database Record template in
the Palette. The two templates are practically identical, except for the fact that a Database Record
structure is automatically associated with a matching database table, and since we would like the
Requisition data to be stored in the database, as we will see later in this stage, we are basing it on a
Database Record.

The Submit model should look similar to the following:

Next we should define the fields comprising the data structure. To insert data elements into the
data structure, we simply drag the appropriate data types (Number, Text, etc.).

Select the Data Types/Number template () and drop it into the Requisition data
structure. Name it Id.

Select the Data Types/Text template () and drop it into Requisition as well. Name it
Description.

The Requisition data structure should look similar to the following:

The Requisition data structure now contains 2 fields: Id, which is to be an automatically-
generated unique identifier for each requisition, and Description, which is a free text description
of the requisition as entered by the user.

Use a Process Template (to generate a record identifier)

As explained previously, Id must be an automatically-generated, unique identifier. It must be
unique, because we don’t want any two requisitions to have the same identifier.

This can be accomplished by using the Sequence Number template:

Select the Database/Sequence Number template () and drop it into the Submit
model. Name it Requisition Id.

The model should look similar to the following:

Sequence Number is an example of a built-in process (action) that generates a new unique identifier. A
process is something that is being performed.
A process can be a built-in action provided with the Tersus platform, and accessible through the palette
(e.g. a basic mathematical calculation), or a more complex process modeled by a user (either you
yourself or someone else).
Process modeling is the major activity required for creating a solution (a solution is comprised of display
models, data models and process models).

When a process (in our case Sequence Number) generates some output (the unique identifier),
the output needs to “exit” the process in order to be used by another process or populate a field
of a data structure. An Exit slot is modeled as a gray triangle () that appears on the frame of
the process model.

There are two major types of Slots: Triggers that receive data when a process starts (discussed later),
and Exits that expose data generated by the process while executing.

The Sequence Number template outputs the unique identifier it created through the predefined
<Next> exit.

Create a Flow

Of course, we still need to pass this generated identifier from the <Next> exit of the Sequence
Number process to the Id field of the Requisition data structure. To do this we shall use a
Flow.

Select the Flow tool () at the top row of the palette, click on the <Next> exit slot ()
of Requisition Id to specify the Source, and then click on the Id field in Requisition to
specify the Target. An arrow should appear linking the slot with the field.

While using the Flow tool, the mouse pointer changes to signify whether the current position can serve
as the Source or Target of a flow definition.

The Submit model should now look as follows:

A Flow is modeled by an arrow between two model elements (Source and Target). A Flow
defines the relation between the Source and Target, in two ways:

Order of Execution: When should each process be executed (and depending on what conditions).

Data Flow: When and how are data items passed.

Use a Display Data Element (to retrieve user input)

Now that we've stored the automatically generated identifier in the Requisition data structure,
we need to store the Description in the same data structure – after all, this is the real
information we are interested in. To accomplish this we shall define a new type of element in the
model called a Display Data Element.

A Display Data Element is an alternative representation of a Display element (and its sub-
elements) as a data structure. It's main purpose is to provide access to the contents of the display
so that it can be read from or written to.

For example, look at the display hierarchy of the popup we are modeling, which contains a
label, a text area, a footer and 2 buttons (see screenshot of the Display - below left). This is
represented by a data structure of the popup, which contains data structures for the text area,
button and label; the text area contains another data structure for its value (see screenshot of the
Display Data Element - below right).

The order of display elements in the Display Data Element screen shot (above right) may be different
from the one you see in your model. The order of appearance is defined by the order in which the
elements were actually added. As long as all the elements appear (at any order) the runtime behavior will
be consistent with the tutorial.

We would like to access the contents of the Description text area, and so we must add to the
Submit button a Display Data Element that references the Enter New Requisition popup.
Since Enter New Requisition is the “father” of the Submit button, we use the Add Ancestor
Reference operation:

Right-click on the Submit button, select Add Ancestor Reference from the menu, and
select Enter New Requisition.

Notice that the inserted data structure has a blue frame (as opposed to the regular black frame of other
elements). The blue frame indicates the fact that the data structure is a reference to another element (the
Enter New Requisition popup), so that as data changes in one the change is automatically mirrored in

the other.

Next you need to create a flow from the Description text area within Enter New Requisition to
the Description field in the Requisition Data structure. The actual text entered by the user is
available through the <Value> data element of the Description text area within Enter New
Requisition data element:

Use the Flow tool () to link Enter New Requisition/Description/<Value> to
Requisition/Description.

Most display elements contain default data elements through which they can be manipulated. These data
elements are identified with a descriptive name (such as Value) surrounded by angled brackets (<...>).

The Submit model should now look as follows:

Let’s summarize what this model does so far:

The Requisition Id sub-process generates an identifier that is passed to the Id field of
Requisition, and the content of the Description text area (entered by the user) is passed to the
Description field of Requisition.

Use the Insert Template (to store data in the database)

Now that the Requisition data structure has been created and populated with the relevant data,
the data has to be stored in the database. To accomplish this, we shall use another process
template, Insert:

Select the Database/Insert template () and drop it next to the Requisition data model.

The Insert template includes a <Record> trigger slot () through which it receives the data
structure to be saved in the database.

Trigger slots are used as the entry point through which a process receives input data when its starts
executing.

To send the Requisition data structure to Insert, let's create a flow:

Select the Flow tool (), then click on the Requisition data structure (anywhere
outside the Id and Description fields) to define it as the source of the flow, and then
click on the <Record> trigger of the Insert model to define it as the target of the flow.

The Submit model should look as follows:

The meaning of the last change should be straight forward – the Requisition database record
data structure is inserted as a new record to the database, into a database table with an identical
name: Requisition. If the table does not exist in the database, it will be created automatically by
the application server.

Notice that many slot names in templates (such as Sequence and Insert in the above screenshot) use a
specific naming convention, where the name is surrounded by angled brackets (‘<…>’). These are
reserved names on which template functionality may rely. If a reserved name is changed, the template
may fail or function incorrectly.

Use the Close Window Template (and make sure processes occur in the
right order)

Once the requisition has been written to the database, the popup window should close:

Select the Display Actions/Close Window template () and drop it into the Submit
button.

The Submit model should look as follows:

The Submit model has 2 parts occurring in an unspecified order, one is the Close Window
process, and the other is the chain of processes which saves the requisition data in the database.

Sometimes it is mandatory to specify which process occurs first, because the order of processes
is an essential part of the application’s logic. In other cases the order in not important, but
nevertheless, it is a good practice to make sure processes occur in a well defined order even
when this is less critical.

We want to make sure that the Enter New Requisition popup window closes only after data has
been saved, therefore we should define a flow which specifies that the Close Window process
occurs following the Insert process, and only if insertion was successful.

To do so, we must first add a trigger to Close Window. We can do so, either by adding a new
trigger slot selected from the palette, or by taking advantage of the fact that Close Window is
“hiding” a pre-defined trigger which is there for exactly that purpose:

Right-click on the Close Window element, open the Add Element sub-menu, and select
the Control trigger element.

The Submit model should look as follows:

The “hidden” Control trigger, is available due to the fact that the Close Window template is
implemented as a Prototype.
Prototypes define the elements making up a given model, and what parts of it are mandatory. In Close
Window's case the trigger is not required in order for Close Window to function (as demonstrated by
the Cancel button in our popup), but in most use cases (such as the one we have implemented here) the
trigger is needed, and so it is provided as an optional element of the Close Window prototype.
It should be noted that the other templates are also implemented as prototypes. For Example: Insert's
prototype includes a “hidden” exit, <Duplicate>, which is useful in cases where the record to be inserted
has a duplicate key, in our case, if the Requisition data structure contains an Id which already exists in
the database. But as this will never occur in our model (we are generating a unique Id using the
Sequence Number template), the <Duplicate> exit may remain “hidden”.
It is important to point out that all elements available through the Add Element sub-menu are there for
'shortcut' purposes only. Each element can actually be created manually (in the specific case that is by
dragging a trigger from the palette onto Close Window, and naming it Control), and will work just as
well.

We want to close the window only after the record has been inserted to the database, i.e. when
Insert is successful and exits through the <Inserted> exit:

Select the Flow tool to link the <Inserted> exit of Insert to the Control trigger of Close
Window.

The Submit model should look as follows:

You may have noticed that the Insert/<Inserted> trigger in the preceding screenshot has been moved
from its default position. This has been done to make the model more “readable” to the modeler, and has
no effect on the model’s functionality.

Save your work.

To view the application in the browser:

Click the Launch the application toolbar button.

Try entering requisitions.

At this stage we still cannot see the content of the database to verify the requisitions have been
successfully stored in it. We will model this later.

If you wish, you may use an external tool (usually provided by the DBMS vendor) to verify that the
Requisition table has been created in the database and to view its content.

Completing Stage 3

Import the sample project Tutorial 3-4 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality, as follows:

Functionality How to Model Located in

Add fields to the
Requisitions table for
future use

Add a Date field (drag the Data
Types/Date template)

Add a Status field (drag the
Data Types/Text template)

Requisition
data structure

Set a default value
(today's date) to the
requisition's Date field

Drag the Dates/Today template

Define a flow from
Today/<Today> to
Requisition/Date

Submit button

Set a default value
(New) to the
requisition's Status field

Drag the Constants/Text
template

Name it New

Define a flow from “New” to
Requisition/Status

Submit button

We have completed the modeling of the logic performed behind the scenes, retrieving user input

and saving it in the database.

You may now proceed to Stage 4, in which we will implement a table display of all the
requisitions stored in the Requisitions table.

See It Live

Object 2

Click here to open the live project in a separate window.

http://tutorials.tersus.com/3-4/

Stage 4 – Modeling a Simple Table Display

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Reuse, Process

Modeling techniques: Retrieve and display data from the database in a table

Useful process templates: Action, Find

Useful display templates: Simple Table

Application Functionality Modeled

In this stage you will model the display of a list of requisitions retrieved from the database.

The resulting web application will look as follows:

This stage’s modeling should be performed in the Tutorial 3-4 project, you imported at the end of the
previous stage.

Model a Tabular Display of Data

In the previous stages we have learned how to display a form used for data entry and store the
entered data in a database.

Next we would like to be able to view the data previously entered, in a tabular manner – one row
per record.

The table will be part of the Open Requisitions view we have created previously.

Zoom to the Open Requisitions view by either:

Double-clicking on it in the editor

or

Locating it in the outline and double-clicking on it there

The table will be located below the New Requisition button, so make sure there's room for the
new model we're about to create in the Open Requisitions model:

Resize the New Requisition button and position it near the top of the Open
Requisitions view.

Create a Table Display

We shall start of by adding a Table Display to Open Requisitions.

Select the Display/Simple Table template () from the palette, and insert it into Open
Requisitions.

Name it Requisition List.

The Simple Table template includes by default, a <Selected Row> element. We will ignore this element
for the time being, but will make use of it in Stage 6 of the tutorial.

The Open Requisitions view model should now look similar to the following:

Reuse a Data Structure to Define Table Contents

We would like the table to be as straightforward as possible and show all fields of Requisition
(Id, Description, Date, Status), so we can simply reuse the Requisition data structure:

Reusing previously defined models is an integral part of the modeling process, and significantly
improves both development speed and model clarity.
When you reuse a model, any change made to it affects all its occurrences. This ensures model
consistency.
You can reuse any type of model (data model, display model or process model).

Locate the Requisition data structure in the Repository view.

Or, in the Outline view.

Zoom into the Requisition List table.

Drag it into the model editor.

And drop it inside the Requisition List element.

Now, since the table contains multiple rows, each repeating the same data structure
(Requisition), we need to define the data structure as repetitive:

Right-click on the Requisition element we have just created, and select repetitive from
the menu.

You can verify that the Requisition element has been defined as repetitive by:
1. Right-clicking on it again, and verifying that repetitive has a check mark next to it.
2. Checking the repetitive property in the Properties pane.
3. Verifying that the Requisition element in the model editor, appears stacked. (see in the screenshot
below)

The Requisition List table model should now look similar to the following:

Save your work and view the application in the browser. It should look similar to the following:

Notice that the Requisition List table is empty – the column titles appear, but there are no rows
in the table. We still need to model the retrieval of data from the database to populate the rows
of the Requisition List table.

Use Action models to Define a Process (populating the display table with
data from the database)

We shall now model retrieving data from the database and populating the table with it:

Select the Basic/Action template (), and drag it into the Open Requisitions model.

Name it Populate Open Requisitions List.

The Action template is a container for defining composite processes.
Since the Populate Open Requisitions List has no trigger defined, it will be executed automatically
when its parent (Open Requisitions) is executed.
The name Populate Open Requisitions List was chosen because it is self explanatory. It has no effect
at runtime, and you can decide on any other name with no change to application behavior.

The Open Requisitions view model should now look as follows:

Notice that Populate Open Requisitions List is not a display model, but rather a process model. It is
not part of the display of the table (as is the Requisition element of Requisition List), but rather some
processing that takes place in order for the table to be properly displayed.
As explained above, it has no triggers and hence it is executed automatically, so we call it an
Initialization Process. Any display model may contain such Initialization Processes.

The Populate Open Requisitions List process will generate a Requisition List data element
(made up of Requisitions read from the database). The generated requisition list will then be
sent to the display.

Define a Sub-Process (generating the table data element in memory)

To generate the Requisition List data element, we shall create a sub-process to the Populate
Open Requisitions List process:

Zoom into Populate Open Requisitions List.

Select the Basic/Action template (), and drag it into the Populate Open Requisitions
List model.

Name it Generate Requisition List.

Use the Find template (to retrieve data from the database)

The Generate Requisition List starts by retrieving data from the database. This is performed by
using the Find template.

Select the Database/Find template (), and insert it into Generate Requisition List.

The Populate Open Requisitions List action model should now look as follows:

The Find template includes two exits, <None> & <Records>, which are “activated” (and
expose output) depending on whether Find finds any records or not. If no record is found, the
<None> exit is activated. If at least one record is found, the records are exposed through the
<Records> exit.

If you look closely at the <Records> exit, you'll notice that it is marked as repetitive (),
meaning that Find can output multiple records.

We still need to define the database table from which Find Requisitions should retrieve records.
This is defined through defining the Data Type of its <Records> exit - the data structure that
the exit outputs. This is defined next.

Use a Display Data Element (to define the data type & create the table data
element)

The records retrieved by Find should be stored in the correct data structure, which in our case
should be a data structure representing the Requisition List display we have previously created.

Drag the Requisition List model from the outline, and drop it next to the Find
Requisitions element.

This creates a Requisition List Display Data Element, which represents the Requisition List
model.

Note that the Display Data Element we have just created is similar, but not identical to the Display
Data Element we created through the Add Ancestor Reference function (in Stage 3).
The similarity lies in that both are data representations of display models. The difference is that through
Add Ancestor Reference, you create a reference to the actual runtime display (providing access to the
displayed data), whereas in the current situation we are creating a new display data element in memory
which has the same structure as the display, but is not the actual runtime display. Another way to put it is
that we have created a logical (or in-memory) display data element.

Next add Flow that will create the Requisition List table from the records provided by Find
Requisitions:

Expand the Requisition List element (by clicking the sign at its upper right corner) to
display its content.

Select the Flow tool to link the <Records> trigger of Find to the repetitive Requisition
data element in Requisition List.

By creating the above flow you have done two things:
1. Explicitly defined where the output of Find should go (the Requisition element of the Requisition
List table);
2. Implicitly defined the data type of the <Records> exit of Find, i.e. Requisition. Since the
Requisition data type is based on a Database Record template, Find knows which database table it
should access (the Requisition table).

The Generate Requisition List action model should now look as follows:

Output Data from the Sub-Process

The Generate Requisition List sub-process is meant to output data (the Requisition List
display data element), so we need to define what data will be output, and where the output will
be stored.

Select the Exit slot () from the palette and click on the frame of the Generate
Requisition List element.

Select the Flow tool to link the Requisition List display data element to the Exit slot we
added.

The Generate Requisition List sub-process should look as follows:

Use a Display Data Element (to output data to the display)

In the previous stage we showed how to use an Ancestor Reference display data element to
retrieve user input from the display. We shall now use the same technique to perform the
opposite, i.e. output data to the display.

Zoom to the Populate Open Requisitions List element.

Right-click on the Populate Open Requisitions List element, select Add Ancestor
Reference from the menu, and select Open Requisitions.

Now we can use the Open Requisitions ancestor reference we have created as the target to
which Generate Requisition List will send its output table.

Double-click on the Open Requisitions data element to zoom into it.

Expand the Requisition List element (by clicking the sign at its upper right corner) to
display its content.

Use the Flow tool to link the Generate Requisition List exit to Open
Requisitions/Requisition List.

The Populate Open Requisitions List model should now look as follows:

Save your work and view the application in the browser. It should look similar to the following:

The data displayed in the table, is data you previously entered (or data bundled with the
Tutorial 3-4 sample application).

Now try entering a new requisition:

Click the New Requisition button.

In the Enter New Requisition popup, enter a Description, and click Submit.

Notice that the table is not updated, although the data is saved, as you may verify by refreshing
your browser.

Reuse the Action Process (to refresh the table display)

Expecting the user to refresh the browser display manually is unacceptable; the table must be
refreshed automatically when a new requisition is submitted.

Refreshing the display means populating the Requisition List table with the most up-to-date
data available, which is exactly what we have just finished modeling, so we can reuse the
Populate Open Requisitions List process.

Since refreshing should be performed when the requisition is submitted, it should be modeled
within the Submit Requisition button:

Zoom to the Submit button we've created in a previous stage.

At this stage, the Submit model should look similar to the following:

The light-grey arrows that appear in the screenshot above (flowing into Requisition), signify that the
source or target of the flow, are not displayed (because their parent has been collapsed)

Add a new action process to the button to perform the required refreshing, after the requisition
has been inserted successfully:

Select the Basic/Action template (), and drag it into Submit Requisition.

Name it Refresh Requisition List.

Select the Trigger slot () from the palette and click on the frame of the Refresh
Requisition List element.

Select the Flow tool, and link the <Inserted> slot of Insert to the Trigger slot of
Refresh Requisition List.

Note that the trigger added to Refresh Requisition List demonstrates an alternative method for adding a
trigger which controls the order in which processing occurs. The other method (using the Add Element
context menu option) was demonstrated on the Close Window element we added (see Stage 3).
This also demonstrates that the name Control itself has no effect on the way the trigger acts. It just
makes the model more readable (exposing the trigger's purpose via its name).

Your model should now look similar to the following:

Notice that slots can serve as the source/target of multiple flow definitions. In our case, when the Insert
model exits successfully, Close Window and Refresh Requisition List are both executed.

Now let's reuse the Populate Open Requisitions List process:

Drag the Populate Open Requisitions List process from the Repository (or Outline)
and drop it into Refresh Requisition List.

The Refresh Requisition List model should look similar to the following:

You may be wondering why we ‘wrapped’ Populate Open Requisitions List in another process
(Refresh Requisition List), instead of placing it directly in the Submit button model, and creating the
flow from Insert directly to it. The reason is that in that case we would need to add a trigger to the

Populate… process, and since the process is reused in the Open Requisitions view, the trigger will also
appear there, and will stop functioning, as the trigger receives no flow in that scenario.

Save your work and view the application in the browser.

Try entering new requisitions and verify that they appear in the list.

Completing Stage 4

Import the sample project Tutorial 4-5 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality, as follows:

1. Place the Description text area and label in a row element, for improved formatting of the
popup

How to Model Located in

Add a Display/Row. Name it Description Row. Enter New Requisition
popup

Drag Description text area from repository/outline.

Drag Description: label from repository/outline.

Description Row

Delete Description text area.

Delete Description: label.

Enter New Requisition
popup

2. Fix flow in Submit Requisition model

How to Model Located in

Click on red flow arrow. Drag source to Enter New
Requisition/Description Row/Description/<Value>

Submit Requisition
button

You may now proceed to Stage 5, in which we shall add support for an Urgency field to the
requisition.

See It Live

Object 3

Click here to open the live project in a separate window.

http://tutorials.tersus.com/4-5/

Stage 5 – Modeling Choosers and Using Constants

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Constant

Modeling techniques: Creating a drop-down list (chooser)

Updating a table structure

Useful display templates: Row, Chooser

Application Functionality Modeled

In this stage you will model the addition of a field to an existing data structure (and the
corresponding database table). The new field will have a predefined set of possible values,
which the user can choose from a drop-down list.

This stage’s modeling should be performed in the Tutorial 4-5 project, you imported at the end of the
previous stage.

Model a Chooser

We want to enable the employee to distinguish urgent requisitions from regular one.

To do so, let’s add an Urgency field to the requisition, which can have two possible values –
Regular and Urgent. This is implemented using a Chooser display element which allows users
to select from a list of predefined values.

Use a Row Element for Better Formatting (of the popup display)

Let’s take a look at the Enter New Requisition popup, which has been updated in the model
imported on completion of the previous stage:

Note that the Description text area and label have been moved into a Row display element
named Description Row. This causes the popup to look neater, by ensuring the elements inside
the row will always appear together in the same row.

We would like the Urgency chooser we are about to add, to be positioned in its own Row:

Zoom into the Enter New Requisition popup.

Select the Display/Row template (), and drag it into Enter New Requisition, below
Description Row.

Name it Urgency Row.

Add a Chooser Display (to the popup)

Next, we shall add the Chooser itself (plus a label):

Zoom into the Urgency Row.

Select the Display/Label template (), and drag it into Urgency Row. Name it
Urgency:.

Select the Display/Chooser template (), and drag it into Urgency Row. Name it
Urgency.

The model should now look as follows:

If you now save your work, run the application and press the New Requisition button, you
should see the row you've just modeled, which includes an empty drop down list (chooser), as in
the following screen shot:

Create an Initialization Process (that populates the chooser with values)

To specify the possible values for Urgency, we’ll need an initialization process in the Enter
New Requisition popup. The initialization process will run each time the Enter New

Requisition popup is opened and will populate the Urgency drop down list with the possible
values to choose from:

Select the Basic/Action template (), and drag it into Enter New Requisition; Name it
Initialize Urgency Chooser.

Zoom into Initialize Urgency Chooser.

The process must include a reference to the Urgency chooser display element, which is part of
the Enter New Requisition popup:

Right-click on the Initialize Urgency Chooser process, select Add Ancestor Reference
from the menu, and select Enter New Requisition.

The model should now look as follows:

Use Constants (to define the values displayed in the chooser)

Since there are only 2, pre-defined urgency values we wish to use, we can define those using
Constants (which are data elements with a predefined fixed value).

Select the Constants/Text template (), and drag it into Initialize Urgency Chooser;
Name it Regular.

Notice that the Regular data element we have just added is displayed as “Regular” instead of Regular.
This indicates it is a Constant.
“Regular” is a textual constant (a string of characters). There are also numeric constants, date constants,
etc.

Values for a chooser need not necessarily be defined using constants. The values may also come from
any other data source, such as the result of a previous process, a database table or a spreadsheet.

Now flow is needed to indicate the constant should populate the chooser:

Create a flow from the “Regular” constant to Enter New Requisition/Urgency
Row/Urgency/<Options>.

To specify a second possible value of the chooser Urgency:

Select the Constants/Text template (), and drag it into Initialize Urgency Chooser;
Name it Urgent.

Create a flow from the “Urgent” constant to Enter New Requisition/Urgency
Row/Urgency/<Options>.

The Initialize Urgency Chooser model should look similar to the following:

If you now save your work and run the application, the drop down list in the Enter New
Requisition popup should allow you to choose between the two possible values Regular and
Urgent, as in the following screenshot:

Add a Field to the Data Structure

The Urgency chooser now appears in the display, but the entered value is not saved with the
requisition. We should also model the addition of the Urgency field to the Requisition database
record.

Zoom to the Requisition database record in Footer/Submit.

Select the Data Types/Text template () and drop it into Requisition. Name it
Urgency.

Note that as the Requisition database record is reused in 2 models (Submit and Requisition List), you
can actually perform the above steps in Requisition List/Requisition, with the same effect. In any case,
the change will affect both.

Next, add a Flow to populate the Urgency field in the Requisition data structure with the value
the user selected in the chooser:

Zoom to the Submit button in Footer.

Create a flow from Enter New Requisition/Urgency Row/Urgency/<Value> to
Requisition/Urgency.

The Chooser has 2 predefined data elements, <Options> and <Value>. <Options> contains the values
appearing in the chooser (which is why it is a repetitive element). <Value> contains the currently
selected value.

The modeling we’ve performed in this last step should look similar to the following:

Reuse Means Faster Modeling (display & database structure are
automatically updated)

If you now save your work, and launch your application in the browser, it should look as
follows:

Without doing any additional modeling on the Requisition List table model, it now displays an
Urgency column. This is because the Requisition database record is reused in the Requisition
List model. And since the Requisition database record defines the actual structure of the
database table, the structure of the Requisitions table in the database is also updated with a new
field, Urgency.

Records that existed in the database before the addition of the Urgency field will have a NULL value,
and will be displayed as an empty value as can be seen in the screen shot above.

Completing Stage 5

Import the sample project Tutorial 5-6 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

You may now proceed to Stage 6, in which we shall model the next stage in a requisition's
lifecycle, the approval of the requisition by the employee’s manager.

See It Live

Object 4

Click here to open the live project in a separate window.

http://tutorials.tersus.com/5-6/

Stage 6 – Modeling an Additional View and Updating Data

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Slot names (reserved & user-defined)

Modeling techniques: Adding views to the application

Processing a row selected in a display table

Updating data stored in the database

Useful process templates: Update

Useful display templates: <Selected Row> (in Simple Table)

Application Functionality Modeled

In this stage you will add a new view to the application. In addition to the initial view, used to
enter requisitions, the new view is used by managers to approve requisitions.

This stage’s modeling should be performed in the Requisition Management system (5-6) project, you
imported at the end of the previous stage.

User Modeling

Add a View to the Model

We shall now add a second view to our application, Requisition Approval. This view will be
used by managers to view requisitions entered by their employees and decide whether to
approve them (or, in the next stage, reject them).

Zoom to the root model (Requisition Management System).

Select the Display/View template () in the Palette and drop it next to the Open
Requisitions view.

Name it Requisition Approval.

The model should now look similar to the following:

The Requisition Approval view will contain a list of open requisitions and buttons to
Approve/Reject requisitions.

Reuse a Display Element (Requisition List)

We have already modeled the list of open requisitions in a previous stage, so let's reuse it:

Drag Requisition List from the Repository (or Outline) and drop it in the Requisition
Approval view.

The model should look similar to the following:

Save your work and view the application in the browser. Note the additional tab Requisition
Approval to the right of Open Requisitions view.

If you click Requisition Approval, you should see the following (the Requisition List table is
displayed but is still empty):

Recreate a Process when it cannot be Reused in full (to populate the
requisition list)

The Requisition List is empty because we have not reused the process which populates it
originally (in the Open Requisitions view) - Populate Open Requisitions List.

Let’s have a look at this process and recall what it does:

The Populate Open Requisitions List process includes a Generate Requisition List process

which creates a Requisition List data element populated with Requisitions from the database.
The generated Requisition List is then sent to populate the table display through the Open
Requisitions ancestor reference.

This is nearly identical to what we want to perform here, except that the target table display is in
the Requisition Approval view (the new view we have just defined) rather than the Open
Requisitions view (the original view). So, we should create a new Populate Requisition
Approval List process in the current view, reusing the Generate Requisition List process.

Zoom into Requisition Approval.

Select Basic/Action in the palette and drop it in Requisition Approval.

Name it Populate Requisition Approval List.

To reuse Generate Requisition List, drag it from the outline and drop it into Populate
Requisition Approval List.

Right-click on the Populate Requisition Approval List element, select Add Ancestor
Reference from the menu, and select Requisition Approval.

Use the Flow tool to link the exit of Generate Requisition List to Requisition
Approval/Requisition List.

The model should look similar to the following:

Save your work and view the application in the browser.

If you click on the Requisition Approval tab, you should see the following:

You can verify that the requisition list appears in both views and updated when a new
requisition is entered in the Open Requisitions view.

Add a Button (that updates an existing record, marking it Approved)

The Requisition Approval view should provide a manager with the ability to select a row in the
table and mark it Approved (or Rejected).

Let’s start with creating the button itself. To keep this view consistent with the Open
Requisitions view, place the button above the table:

Select Display/Button in the palette and drop it in Requisition Approval (above the
Requisition List).

Name it Approve Requisition.

The Requisition Approval model should look similar to the following:

Now, let’s model the button logic, which should consist of the following:

1. Retrieving the selected row from the table

2. Changing the Status field value for the row to Approved

3. Updating the corresponding record in the database

4. Refreshing the Requisition List table to display the updated record

Retrieve the Selected Row from a Table Display

To retrieve the selected row from a table display, we first need to include a reference to the
display.

Zoom into Approve Requisition.

Right-click on Approve Requisition, select Add Ancestor Reference from the menu,
and select, Requisition Approval.

The Approve Requisition model should look similar to the following:

The <Selected Row> data element is included by default in any display element based on the
Simple Table (or Table) template. Whenever the user clicks a row in the table (at runtime), the
<Selected Row> element will contain the data in that row.

The <Selected Row> element supports any row structure defined in it's parent model (the table). This is

possible as it is based on the Anything data type.

Change a Field’s Value

The <Selected Row> element returns the selected row as a Requisition data structure. We
should now create a process which changes the Status of the selected requisition to Approved.

Select Basic/Action in the palette and drop it next to the Requisition Approval ancestor
reference.

Name it Change Requisition Status.

The Change Requisition Status process we are creating should receive the selected
Requisition as input:

Select the Trigger slot () in the palette and drop it on the frame of Change
Requisition Status.

Add Flow linking Requisition Approval/Requisition List/<Selected Row> to the
trigger just added to Change Requisition Status.

In a moment we will add additional slots, so it would be a good idea to name the slot we have
just created so that its purpose (and content) is clear to anyone looking at the model.

Select the trigger we have just added and press [F2].

In the edit box that appears, enter Original Requisition as the name of the trigger.

The Approve Requisition model should look similar to the following:

An additional input to Change Requisition Status should be the new value to set Status to:

Select Constants/Text in the palette and drop it next to the new trigger (outside Change
Requisition Status). Name it Approved.

Add another Trigger to Change Requisition Status. Select it and press [F2] to name it
Updated Status.

Add Flow linking the “Approved” constant to the Change Requisition Status/Updated
Status trigger.

Finally, the process should output the updated Requisition:

Add an Exit slot () to the frame of Change Requisition Status. Select it and press
[F2] to name it Updated Requisition.

The Approve Requisition model should look similar to the following:

Now let’s drill into Change Requisition Status and model the update of the Status field of
Requisition.

Zoom into Change Requisition Status.

Drag the Requisition database record into Change Requisition Status.

Add Flow linking the Original Requisition trigger to the Requisition data structure.

Add Flow linking the Updated Status trigger to the Requisition/Status field.

Add Flow linking the Requisition data structure to the Updated Requisition exit.

The Change Requisition Status model should look similar to the following:

Commit the Updated Record to the Database and Refresh the Table Display

The Updated Requisition exit slot returns an approved requisition, which should be updated in
the database. We shall use the Update template for this purpose.

Zoom out to the Approve Requisition button model.

Select the Database/Update template () and place it next to the Change Requisition
Status process.

Create Flow linking the Change Requisition Status/Updated Requisition exit to
Update/<Record> trigger.

The Approve Requisition model should look similar to the following:

We have to make sure the table is refreshed on screen if Update was successful, so that the

display is kept synchronized with the database. On a successful update, the Update process will
exit through its <Updated> exit:

Drop a Basic/Action template next to Update. Name it Refresh Requisition List.

We’re creating a new process model, with an identical name to an existing process (there’s a similar
Refresh Requisition List process in Submit Requisition). This is possible when the 2 models are in
different “packages” in the repository. Giving a new model the name of an existing model in the same
package is prohibited.

Right-click Refresh Requisition List and open the Add Element sub menu to select the
Control trigger.

Create Flow linking the Update/<Updated> exit to the Refresh Requisition List
trigger.

And lastly, reuse the Populate Requisition Approval List process we created in the beginning
of this stage:

Drag the Populate Requisition Approval List process from the outline into the Refresh
Requisition List process.

The Approve Requisition model should look similar to the following:

Save your work and view the application in the browser.

Click on the Requisition Approval tab.

Click on the Approve Requisition button before selecting a requisition.

Nothing should occur, since no requisition is selected.

Click on one of the new requisitions in the list.

The selected row is signified by a slightly darker background color, as in the following
screenshot (3rd row):

Click on the Approve Requisition button.

The table should be refreshed and the requisition selected should change status to Approved, as
in the following screenshot:

Completing Stage 6

Import the sample project Tutorial 6-7 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

You may now proceed to Stage 7, in which we shall model similar buttons to the Approve
Requisition button modeled in this stage, by re-factoring (change) parts of the modeling and re-

using it for canceling and rejecting requisitions.

See It Live

Object 5

Click here to open the live project in a separate window.

http://tutorials.tersus.com/6-7/

Stage 7 – Re-factoring - Changing a Process to Enhance
Reusability

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Re-factoring

Modeling techniques: Deleting model elements

Application Functionality Modeled

In this stage you will add a Cancel Requisition button, in the Open Requisitions view.
Canceling a requisition is performed simply by setting its Status field to Canceled.

This will be followed by a Reject Requisition button, in the Requisition Approval view,
setting the Status field to Rejected.

This stage’s modeling should be performed in the Tutorial 6-7 project, you imported at the end of the
previous stage.

Re-factor an Existing Model

The Cancel Requisition and Reject Requisition models are very similar to the Approve
Requisition model we created in the previous stage, so let’s recall how it was modeled:

Of-course, we cannot reuse the Approve Requisition model as-is, because it depends on some
elements which are specific to it, and may be different for Cancel Requisition and Reject
Requisition, as illustrated in the following table:

Model

Element

Approve
Requisition

Cancel
Requisition

Reject
Requisition

View (ancestor reference) Requisition
Approval

Open
Requisitions

Requisition
Approval

Status constant “Approved” “Canceled” “Rejected”

The refresh process to be
executed following the Update

Refresh
Requisition
List (from the
Requisition
Approval
package)

Refresh
Requisition
List (from the
Open
Requisitions
package)

Refresh
Requisition
List (from the
Requisition
Approval
package)

Other than these elements all other elements of the model are identical, so it makes sense to
change the model by grouping all the reusable functionality in a separate process. This modeling
technique (re-arranging the model differently) is referred to as Re-factoring.

Group Reusable Elements in a Process

We shall begin the re-factoring of the Approve Requisition button by creating the reusable
process:

Zoom to Approve Requisitions.

Drop a Basic/Action template into Approve Requisitions.

Name it Update Requisition, and zoom into it.

Next, copy into the newly created process the reusable functionality we outlined above:

Drag and drop the following processes from the repository (or outline): Change
Requisition Status and Update.

Create Flow linking the Change Requisition Status/Updated Requisition exit to
Update/<Record> trigger.

The Update Requisition process should look similar to the following:

The slots which have no flow connected to them hint at what we should handle next. Recall, that
all the slots in question (e.g. the trigger Original Requisition) were originally the target or
source for flows from/to elements which we cannot reuse. We should add corresponding slots to
the Update Requisition process we are now modeling, so that the non-reusable elements could
be specified outside the reusable process.

Place a Trigger on the upper left frame of Update Requisition. Name it (using [F2])
Selected Requisition.

Create Flow linking this trigger to Change Requisition Status/Original Requisition.

Place a second Trigger on the left frame of Update Requisition. Name it Status Value.

Create Flow linking this trigger to Change Requisition Status/Updated Status.

Place an Exit on the right frame of Update Requisition frame.

Create Flow linking the Update/<Updated> exit to this exit.

The Update Requisition process should look similar to the following:

Finish Re-factoring (replacing elements and flow with the new process)

To finish the Re-factoring, we need to clean-up Approve Requisition by redefining flow
to/from the Update Requisition process and removing redundant elements.

Collapse (clicking in the top-right corner of) Update Requisition process (to
minimize confusion or mistakes).

Zoom out to Approve Requisition.

Redefine 3 Flows:

Click on the Flow connecting the Requisition Approval display data element with the
Change Requisition Status/Original Requisition trigger, to select it.

Click on the Flow’s target anchor () and drag it onto the Update
Requisition/Selected Requisition trigger.

Select the Flow connecting the “Approved” constant to Change Requisition
Status/Updated Status trigger.

Click on the Flow’s target anchor () and drag it onto the Update
Requisition/Status Value trigger.

Select the Flow connecting the Update process to the Refresh Requisition List process.

Click on the Flow’s source anchor () and drag it onto the exit of Update
Requisition.

The model now looks similar to the following:

We should remove the redundant elements appearing at the top of the screenshot.

Select each of the redundant elements Change Requisition Status, Update, and the
flows linking them, and delete them by pressing [Del].

Now the re-factoring of Approve Requisition is complete and the model should look similar to
the following:

Save your work and view the application in the browser. There should be no difference as to
how it looks or functions.

Make sure that the Approve Requisition button still functions correctly.

Reuse part of the Re-factored Model (Cancel Requisition)

We shall now create the Cancel Requisition button in the Open Requisitions view which
should be similar to the Approve Requisition button.

Zoom to the Open Requisitions view.

Drop a Display/Button template next to the New Requisition button.

Name it Cancel Requisition.

Zoom into Cancel Requisition.

Now create a model similar to Approve Requisition (use the previous screenshot as a
reference), reusing the Update Requisition process:

Drag–and-drop the Update Requisition process we've just created from the outline to
Cancel Requisition.

The Open Requisitions view model now looks similar to the following:

Create a reference to the view, from which the Requisition List is to be retrieved:

Right-click on Cancel Requisition, select Add Ancestor Reference, and choose Open
Requisitions.

Create Flow linking the Requisition List/<Selected Row> element in the Open
Requisitions ancestor reference to the Update Requisition/Selected Requisition
trigger.

The Cancel Requisition button model now looks similar to the following:

Define a new constant, “Canceled”:

Add a Constants/Text from the palette. Name it Canceled.

Create Flow linking “Canceled” to Update Requisition/Status Value.

The model now looks similar to the following:

And to finish off, refresh the view following status update by reusing an existing refresh
process:

Drag-and-drop the Refresh Requisition List (the one used in the Submit button of the
Enter New Requisition popup) from the repository (or outline) to Cancel Requisition.

Create Flow linking the Exit of Update Requisition to the trigger of Refresh
Requisition List.

The Cancel Requisition button is now complete, and should look similar to the following:

Save your work and view the application in the browser, which should look similar to the
following:

Make sure that the Cancel Requisition button (in the Open Requistion view) functions
correctly.

Completing Stage 7

Import the sample project Tutorial 7-8 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality as follows:

1. Add a Button Row to Open Requisitions view and place the buttons in it, for a neater

display

How to Model Located in

Drag a Display/Row template. Name it Button Row. Open Requisitions view

Drag New Requisition and Cancel Requisition from the
outline/repository

Button Row

Delete New Requisition and Cancel Requisition buttons Open Requisitions view

2. Add a Button Row to Requisition Approval view, for a neater display

How to Model Located in

Drag a Display/Row template. Name it Button Row. Requisition Approval
view

Drag Approve Requisition from the outline/repository Button Row

Delete Approve Requisition Requisition Approval
view

3. Add a Reject Requisition button to the Requisition Approval view, recreating the modeling
performed for Approve Requisition and Cancel Requisition

How to Model Located in

Drag a Display/Button template and name it Reject
Requisition.

Requisition
Approval/Button Row

Reuse the Update Requisition process.

Add an ancestor reference to the Requisition Approval
view.

Create a new text constant “Rejected”.

Reuse the Refresh Requisition List process (from the
Requisition Approval package).

Create flows identical to those of Approve Requisition.

Reject Requisition button

You may now proceed to Stage 8, in which we shall fine-tune the retrieval of requisitions in
both views to make sure that only the relevant requisitions appear in each view.

See It Live

Object 6

Click here to open the live project in a separate window.

http://tutorials.tersus.com/7-8/

Stage 8 – Filtering Retrieved Data

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Flow errors, Remove Flow

Modeling techniques: Filtering retrieved data, Clearing table display, Moving
models between packages

Useful process templates: Find (with condition), Advanced Find

Application Functionality Modeled

In this stage you will fine-tune the two views you have created (Open Requisitions and
Requisition Approval).

Currently both views display all requisitions in the database, which is inconsistent with their
intended user (and will make them difficult to use as more and more requisitions are entered into
the system). Ideally, each view should filter requisitions and display only the requisitions which
are relevant to that view:

• The Open Requisitions view should display all requisitions except those that have been
canceled (i.e., filter requisitions based on the following condition: Status<>Canceled).

• The Requisition Approval view should only display new requisitions (Status=New).

This stage’s modeling should be performed in the Tutorial 7-8 project, you imported at the end of the
previous stage.

User Modeling

Both views contain a process that populates the requisition list with requisitions.

We shall start with the Populate Requisition Approval List process.

Populate Requisition Approval List is reused in the following locations:

1. Requisition Approval view

2. Requisition Approval/ Approve Requisition button

3. Requisition Approval/ Reject Requisition button

Because of reuse, editing and changing Populate Requisition Approval List in one of these

locations, will be sufficient.

Add a Trigger to the Find Process (to specify a value by which to filter)

Populate Requisition Approval List currently looks as follows:

We would like the Generate Requisition List sub-process to return Requisitions whose Status
is New:

Zoom to Generate Requisition List.

Add a Trigger to Find. Name it (pressing [F2]) Status.

Drag the “New” constant from the repository (or outline) and drop it next to the Status
trigger.

We want to reuse the existing New constant in the Submit button of the Enter New Requisition popup.

Create Flow linking the “New” constant to the Find/Status trigger.

The Generate Requisition List process should now look as follows:

When we add a trigger to the Find process and the trigger name matches a field in the table
from which the records are retrieved (Status in our case), Find will only retrieve those records
where the field contains the value supplied to the trigger (“New” in our case).

For more information regarding Find see the Templates section of the on-line documentation.

Save your work and view the application in the browser.

Switch to the Requisition Approval view.

Verify that the Requisition List is now filtered to display requisitions whose Status
equals New.

Approve or reject a requisition and verify that it is removed from the Requisition List.

Continue approving or rejecting requisitions until one requisition is left.

Use Remove Flow (to clear the table)

If you now, approve or reject the last requisition, you will see that it is not removed from the
display (although its status has changed in the database, as can be seen if you refresh the
browser display – the table will appear empty).

This occurs because when Generate Requisition List is executed in order to refresh the
requisition list, after the last requisition has been approved/rejected, the Find process fails to
find any records whose Status=New and therefore exits through its <None> trigger (instead of
the usual <Record> trigger). The <None> trigger does not have flow defined from it, and so the
process terminates, which means the display is not refreshed.

To refresh the display in this case, we need to define flow exiting <None> and use a special type
of flow, Remove, which will clear the table display:

Zoom to Generate Requisition List.

Add an exit slot to Generate Requisition List. Name it Clear Table.

Create flow linking the Find/<None> exit to the Generate Requisition List/Clear
Table exit.

The Generate Requisition List model should look similar to the following:

What is left to do in order to clear the display is to add the Remove flow tool, which is used to
specify that the flow’s target should be cleared of existing elements (in our case at runtime this
will be the single requisition that we have just approved or rejected).

Zoom to Populate Requisition Approval List.

Select the Remove flow tool (). Click on the Generate Requisition List/Clear
Table exit to define the source. Click on Requisition Approval/Requisition
List/Requisition database record to define the target.

The Populate Requisition Approval List model should look similar to the following:

Save your work and view the application in the browser. Verify that in the case of a single

requisition appearing in the table, approving/rejecting it clears the table, as in the following
screenshot:

Notice that because Generate Requisition List is reused in the Open Requisitions as well it
will display the same list of requisitions whose status equals New. We will handle this next.

Opening Models in a Separate Editor Window

The Open Requisitions view requires that we implement a different filter: Status<>Canceled.

Populate Open Requisitions List currently looks as follows:

We need to update the Populate Open Requisitions List process to implement the different
filter, and since the actual filtering is performed in the Generate Requisition List sub-process,
which we must not change (as it is used by Requisition Approval), we shall replace the existing
process with a new (separate) Generate Requisition List.

Since we are going to recreate (in part) functionality that is already modeled in Populate
Requisition Approval List, we can open it in a separate model editor window. This will allow
us to use it as a reference for further modeling, switching back and forth between the two
windows.

To open Populate Requisition Approval List in a separate window, you can either:

Locate Populate Requisition Approval List in the Repository Explorer, and double-
click.

Or:

Locate Populate Requisition Approval List in the Model Editor, right-click it, and
select Open in a New Tab

The quickest way to locate a model in the repository is by right-clicking the model in the editor and
selecting

Your model editor should now display 2 editor windows; one for the root model Tutorial 7-8
and another for Populate Requisition Approval List, as in the following screenshot:

Remove an Element from the Model

Go back to editing the complete model:

Click on the Tutorial 7-8 editor tab.

Locate Populate Open Requisitions List (in Open Requisitions) to begin modeling the
changes:

Zoom to Populate Open Requisitions List.

As explained before, any of the instances of the model will do (as long as they are the

Requisition Approval’s version).

Now remove the obsolete process:

Select Generate Requisition List and delete it.

The model should look as follows:

The flow arrow which linked Generate Requisition List to the Open Requisitions display data
element will turn red to indicate a modeling error. We shall deal with it in a moment.

Understanding Model Packaging and Naming

Despite the fact that we deleted the Generate Requisition List process from the Open
Requisitions view, meaning it remains in use only in the Requisition Approval view, the
Generate Requisition List model remains in the package in which it was originally created, i.e.
the Open Requisitions package (verify this by looking in the Model Repository). This has no
effect on application behavior in runtime, since packaging is implemented solely for developer
convenience, and a model from any package may contain elements from any other package.

There is however one interesting side effect on our subsequent modeling: We next plan to create
a new Generate Requisition List model, similar to the existing one, in Populate Open
Requisitions List - which means it will be created by default in the Open Requisitions package
(the same package as the existing Generate Requisition List model), resulting in a new model
called Generate Requisition List 2, which will work just the same, but in order to keep things
neat and tidy, we would like to avoid this.

A solution to this is to move the existing Generate Requisition List model to the Requisition
Approval package:

Locate Generate Requisition List in the Open Requisitions package (see the
screenshot below).

Drag-and-drop Generate Requisition List on the Requisition Approval package.

Now create the alternative Generate Requisition List process:

Drop a Basic/Action template into Populate Open Requisitions List. Name it Generate
Requisition List.

Add an Exit slot to the new process.

Select the red flow arrow and drag its source anchor to the new exit.

If you entered all names correctly, the red arrow will reconnect automatically, and the last step above
will not be needed.

The Populate Open Requisitions List model should look as follows:

Now, let’s model the new Generate Requisition List, by looking again at the existing
Generate Requisition List (in the Populate Requisition Approval List process which we
opened in a separate model editor window).

We need to add a Requisition List display data element:

Drag-and-drop Requisition List from the repository (or outline) onto Generate
Requisition List.

Add flow linking Requisition List to the Generate Requisition List exit.

The Populate Open Requisitions List model should look as follows:

Use the Advanced Find template (to filter records using a complex criteria)

Looking once more at the Populate Requisition Approval List window, we can see that we’re
missing the Find process which retrieves data, but as explained earlier, we need to implement a
“does not equal” criteria, which is not supported by the Find template. Instead we shall use the
Advanced Find template:

Select the Database/Advanced Find template () and drop it in Generate Requisition
List.

Advanced Find is similar to Find in that it has 2 exits, <None> and <Records>, so:

Create Flow linking Advanced Find/<Records> exit to the Requisitions data structure
in Requisition List.

Generate Requisition List should look as follows:

We want to filter out records, whose Status is Canceled.

The filter is provided through the <Filter> trigger of Advanced Find, as a text string defining
constraints on one or more fields in the table. The constraint in our case should be
“Status<>’Canceled’”.

In its simple form, Advanced Find relies exclusively on the default <Filter> trigger, but to
provide additional flexibility, triggers can be added which will provide parameters for the filter
itself:

Add a Trigger to Advanced Find. Name it (pressing [F2]) Status.

Now the filter can be defined as “Status<>${Status}”, where in runtime, ${Status} will be
replaced with the value passed to the Status trigger.

Note the use of the $ sign and {curly} brackets to signify a parameter.

Define the filtering condition itself:

Add a Constants/Text from the palette.

Name it Status<>${Status}.

Link it to the Advanced Find/<Filter> trigger.

And set the parameter of the filter, Status:

Locate and drag the “Canceled” constant (from the Cancel Requisition button) in the
repository (or outline).

Link it to the Advanced Find/Status trigger.

For more information regarding Advanced Find see the Templates section of the on-line
documentation.

The Populate Open Requisitions List model should look similar to the following:

Save your work and view the application in the browser.

Verify that Requisition List in Open Requisitions does not display any requisitions
with status Canceled.

Select a requisition from the list and press Cancel Requisition. The Requisition should
disappear from the list.

This demonstrates, again, how reuse works: the changes which have been performed on the
Populate Open Requisitions List model in one location (Open Requisitions), also apply to
other locations where it is reused (in this case: Open Requisitions/Cancel Requisition).

Completing Stage 8

Import the sample project Tutorial 8-9 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality, as follows:

1. Emptying Requisition List display when Populate Open Requisitions List/Generate
Requisition List does not find requisitions.

How to Model Located in

Add exit slot to Generate Requisition List. Name it
Clear Table.

Link Advanced Find/<None> to Generate Requisition
List/Clear Table.

Populate Open
Requisitions List/Generate
Requisition List process

Create Remove flow linking Generate Requisition
List/Clear Table to Open Requisitions/Requisition
List/Requisition

Populate Open
Requisitions List process

2. Add another view, All Requisitions, which displays all requisitions in the system, regardless
of their Status.

How to Model Located in

Add Display/View. Name it All Requisitions. Tutorial 7-8 root

3.All Requisitions view modeling (continued)

How to Model Located in

Drag Requisition List simple table from the
outline/repository.

Add Basic/Action. Name it Populate All Requisitions
List.

All Requisitions view

4. All Requisitions/Populate All Requisitions List process modeling.

How to Model Located in

Add an ancestor reference of the All Requisitions view.

Add Basic/Action. Name it Generate Requisition List.

Add an Exit to the Generate Requisition List process.

Link the exit to the All Requisition/Requisition List data
structure.

Populate All Requisitions
List process

5. All Requisitions/Populate All Requisitions List/Generate Requisition List process
modeling.

How to Model Located in

Add Database/Find.

Drag Requisition List from the outline/repository.

Link Find/<Records> to Requisition List/Requisition.

Link Requisition List to the Generate Requisition List
exit.

Generate Requisition List
process

You may now proceed to Stage 9, in which we are going to visually re-arrange the views we

have created so far into groups targeted at the different users of the system.

See It Live

Object 7

Click here to open the live project in a separate window.

http://tutorials.tersus.com/8-9/

Stage 9 – Arranging Views into Perspectives

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Perspectives

Modeling techniques: Grouping views together

Useful display templates: System (used to define perspectives)

Application Functionality Modeled

In the following stages we are going to model more views, in addition to the three already
modeled. The additional views will be used by the purchaser and the shipping clerk. It would be
a good idea to organize and group the views according to the different roles of users: Employee,
Manager, and Purchaser.

This stage’s modeling should be performed in the Tutorial 8-9 project, you imported at the end of the
previous stage.

User Modeling

The application currently looks as follows:

The three views, Open Requisitions, Requisition Approval, and All Requisitions, are grouped
together. We would like to group them so that Open Requisitions and All Requisitions (used
by all employees) are separated from Requisition Approval (used by managers), as in the
following screenshot:

The main visual difference between the two screen shots is the use of multiple Perspectives,
appearing as tabs vertically on the left side of the screen (two in this case: Employee and
Manager).

Perspectives are used to group together multiple views. The default behavior, for views not
defined in a perspective, is to group all views in a single perspective whose name is the root
model name (in our case, Tutorial 8-9 - as demonstrated in the first screen shot).

Add a Perspective (Employee)

Do the following to define the Employee perspective:

Zoom to the Tutorial 8-9 root model.

Add a Basic/System template (). Name it Employee.

Zoom into the Employee system.

Drag the Open Requisitions view and the All Requisitions view from the repository (or
outline) into the Employee system.

The model should look as follows.

Save your work and view the application in the browser. The application should look as follows:

We have not removed the three views from the root model; therefore they still appear in a
default perspective named after the root model.

Now, click on the new Employee perspective.

You should see the following:

The Employee perspective is defined correctly.

The application model as it is now defined demonstrates the fact that views, as with other model types
may be reused in an application (in the case of views, reusing across perspectives).

Remove the Default Perspective

To remove the default perspective, Tutorial 8-9, do the following:

Zoom to the Tutorial 8-9 root model.

Select each of the three views Open Requisitions, Requisition Approval, and All
Requisitions and delete them from the view.

We have deleted the Requisition Approval view from its parent model. This is not a problem, since the
Requisition Approval model remains in the repository.

Add an additional Perspective (Manager)

Last, let’s create the Manager perspective.

Do the following to define the Manager perspective:

Zoom to the Tutorial 8-9 root model.

Add a Basic/System template. Name it Manager.

Zoom into the Manager system.

Drag the Requisition Approval view from the repository into the Manager system.

The model should look as follows.

Save your work and view the application in the browser. The application should look as follows:

The grouping of views into perspectives may later be used in conjunction with the built-in support for a
User/Permissions system to specify which perspectives are displayed after a user logs in to the system.

Completing Stage 9

Import the sample project Tutorial 9-10 and use it as the basis for the next stage of the Tutorial
8-9.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the

end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality as follows:

1. Add a new Purchaser perspective and a Manage Suppliers view, containing a table and a
“Populate” process.

How to Model Located in

Add a Basic/System. Name it Purchaser. Tutorial 8-9 root

Add a Display/View. Name it Manage Suppliers. Purchaser system

Add a Display/Simple Table. Name is Supplier List.

Add a Basic/Action. Name it Populate Supplier List.

Manage Suppliers
view

2. Define a new database table, Supplier.

How to Model Located in

Add a Data Types/Database Record. Name it Supplier. Set
it to repetitive.

Supplier List table

Add the following fields (data type in parentheses):

Id (Number)

Company Name (Text)

Contact Name (Text)

Email (Text)

Phone (Text)

Supplier data structure

3. Model the Populate Supplier List process to initiate the display of the suppliers list

How to Model Located in

Add Basic/Action. Name it Generate Supplier List. Add an
exit to it.

Add an ancestor reference of Manage Suppliers view.

Link the Generate Supplier List exit to Manage
Suppliers/Supplier List.

Populate Supplier List
process

Add Database/Find.

Reuse the Supplier List display as a data structure by
dragging it from repository/outline.

Link Find/<Records> to Supplier List/Supplier.

Link Supplier List to the Generate Supplier List exit

Generate Supplier List
process

4. To Manage Suppliers view, add a Button Row with an Add Supplier button containing a
Enter New Supplier popup.

How to Model Located in

Add Display/Row. Name it Button Row. Manage Suppliers
view

Add Display/Button. Name it Add Supplier. Button Row

Add Display/Popup. Name it Enter New Supplier. Add Supplier button

5. Add display elements to the Enter New Supplier popup.

How to Model Located in

Add the following display elements (template in
parentheses):

Company Row (Row)

Company Name: (Label)

Company Name (Text Input Field)

Contact Row (Row)

Contact Name: (Label)

Contact Name (Text Input Field)

Email Row (Row)

Email: (Label)

Enter New Supplier
popup

Email (Text Input Field)

Phone Row (Row)

Phone: (Label)

Phone (Text Input Field)

Rename OK button to Submit Footer footer

6. Implement the Enter New Supplier/Submit button (similar to the Enter New
Requisition/Submit button we created in the beginning of the tutorial).

How to Model Located in

Add an ancestor reference of Enter New Supplier popup.

Add a Database/Sequence Number. Name it Supplier Id.

Reuse the Supplier database record from the
repository/outline.

Link Supplier Id/<Next> to Supplier/Id

Add the following flows (source in Enter New

Submit button

Supplier/Supplier List ancestor reference, target in
Supplier data structure):

• Company Name/.value to Company Name

• Contact Name/.value to Contact Name

• Phone Number/.value to Phone

• Email Address/.value to Email

Add Database/Insert.

Link Supplier data structure to Insert/<Record>

Add Basic/Action. Name it Refresh Supplier List. Add a
Control trigger to it.

Link Insert/<Inserted> to the Refresh Supplier
List/Control.

Add Display Actions/Close Window. Add a Control
trigger to it.

Link Insert/<Inserted> to the Close Window/Control.

Reuse Populate Supplier List from the outline/repository. Refresh Supplier List
process.

You may now proceed to Stage 10, in which we are going to model a process which imports a
list of suppliers from an excel worksheet into the database.

See It Live

Object 8

Click here to open the live project in a separate window.

http://tutorials.tersus.com/9-10/

Stage 10 – Importing Data from Excel

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling techniques: Importing data, Concatenating text values, Validation

Useful process templates: Service, Load Excel Table, Concatenate

Useful display templates: File Input Field

Application Functionality Modeled

In this stage we shall move on to handle the Purchaser’s view of the application.

The purchaser’s job is to review requisitions, to get quotes for prices and to issue Purchase
Orders (POs) for the items specified in the requisitions.

The purchaser manages a list of suppliers to whom the relevant POs are issued.

To support this, we shall model the following:

• Managing the list of approved suppliers – Including the import of a list of suppliers from
an Excel spreadsheet.

• Managing the list of POs. Each requisition may result in the purchaser issuing multiple
POs to one or more suppliers.

On completing the previous stage, we included in the sample project a new Purchaser
perspective with a basic Manage Suppliers view, which manages a Suppliers database table
and already implements the display in a table and the addition of new suppliers.

The model provided looks as follows:

When viewed in the browser, it looks as follows:

This stage’s modeling should be performed in the Tutorial 9-10 project, you imported at the end of the
previous stage.

User Modeling

In most organizations, some data is maintained by certain officers on their PCs, using a
spreadsheet program such as Excel (or in an application that can output/export Excel files).

For the sake of this tutorial, we shall assume that the purchaser in our organization has been
maintaining the list of approved suppliers in a spreadsheet. A sample spreadsheet, Suppliers.xls
is provided in [tersus root]/workspace/Tutorial 9-10.

The data in the spreadsheet should be imported into the Suppliers database table which is
already modeled.

Use a File Input Field (to select the spreadsheet file)

We shall add a button and popup which allow the user to select, and ultimately import, the data:

Zoom to the Manage Suppliers view.

Add Display/Button next to Add Supplier. Name it Import Suppliers Data. Zoom into
it.

Add Display/Popup. Name it Select Suppliers Spreadsheet.

The model should look as follows:

Zoom into Select Suppliers Spreadsheet.

Add Display/Row. Name it File Row. Zoom into it.

Add Display/Label. Name it File:.

Add Display/File Input Field. Name it File.

Zoom to Select Suppliers Spreadsheet/Footer.

Rename the OK button to Import.

The Select Suppliers Spreadsheet popup model should look as follows:

The File Input Field (File) contains a default <Value> data element (of type File) which is needed in
order to manipulate and extract the contents of the file.

Save your work, and view the application in the browser.

Click on the Purchaser perspective tab.

Press the Import Suppliers Data button.

The popup we have created should look as follows:

Notice that a File Input Field is actually implemented in the browser in two parts: a text edit
which contains the file name which may be manually entered, and a Browse… button, which
allows the user to navigate his local file system, and select the file to import.

Use a Load Excel Table Template (to extract data rows)

Now that we can select a spreadsheet file to import, let’s model the actual import process.

Start by retrieving the file selected by the user in the Select Suppliers Spreadsheet popup:

Zoom to the Import button.

Add an ancestor reference of the Select Suppliers Spreadsheet popup.

Add a Basic/Service (). Name it Extract Spreadsheet Rows. Add a Trigger to it.

Add flow linking Select Suppliers Spreadsheet/Row/File/<Value> to the Extract
Spreadsheet Rows trigger.

The Import button model should look as follows:

Note that we are using a new type of process template, Basic/Service (), for Extract Spreadsheet
Rows, instead of the usual Basic/Action.
The fundamental difference between a Service and an Action is that the modeling inside a Service, will
always execute on the server-side, whereas Action models will switch dynamically (and transparently)
between Client and Server as required by the different templates used in the model.
There are however certain modeling scenarios, such as the modeling we are about to perform, which
must explicitly be defined as executing on the server-side. For more information, see Stage 13.

The <Value> data element of the File input field is passed to the Extract Spreadsheet Rows
process, and into another File data element:

Zoom into Extract Spreadsheet Rows.

Add a Data Types/File data structure ().

Add flow linking the Extract Spreadsheet Rows trigger to the File data structure.

The Extract Spreadsheet Rows service model should now look as follows:

The Content element of the File data structure contains the actual Excel data:

Add a Miscellaneous /Load Excel Table template ().

Add flow linking File/Content to Load Excel Table/<File>.

The Extract Spreadsheet Rows service model should now look as follows:

You may be thinking that the modeling we have so far performed in the Import button is unnecessarily
complicated, and can be simplified by directly passing Select Suppliers
Spreadsheet/Row/File/<Value>/Content to Load Excel Table/<File>.
We have modeled as we did, due to limitations imposed by the browser, which does not allow access to
Content directly. The File data structure must be passed to the server as-is, in order for Tersus to be able
to extract the binary content from it.

Let’s pause for a minute and take a look at the sample spreadsheet file, Suppliers.xls, from
which we plan to import the data:

The data appears in the Suppliers sheet, and is formatted in a tabular format, where the first row
defines column names (Company, First Name, Last Name, Email, and Telephone) and
subsequent rows contain supplier information (one per row).

Load Excel Table will search for data in the first sheet by default. If the required sheet is not the first
one in the file, you may specify the sheet using the optional <Sheet Name> trigger (available through
right-click -> Add Element).

Define the Data Structure of Rows extracted from the Spreadsheet

The Load Excel Table process still needs a definition of the way the relevant data in the sheet is
structured. This definition is provided in a similar fashion to the Find template (discussed in a
previous stage) – by deducing the data structure from the target of its exit, <Rows>, as we will
see in a few minutes.

Once rows are extracted, the data should be copied into the Supplier database record which is
used to store suppliers in the database:

Zoom to Extract Spreadsheet Rows.

Add a Basic/Action. Name it Write Supplier Record. Add a Trigger to it.

Add a flow linking Load Excel Table/<Rows> to the Write Supplier Record trigger.

As there are usually multiple rows extracted from the spreadsheet (which is the reason the
<Rows> exit is repetitive), the Write Supplier Record process should be marked as repetitive
– meaning that it is executed once for each row which is extracted by Load Excel Table:

Right-Click on the Write Supplier Record process, and check the repetitive option.

The Extract Spreadsheet Rows process should look similar to the following:

The input to the Write Supplier Record trigger is a single row from the spreadsheet, and so it is
time to define its type:

Zoom into Write Supplier Record.

Add a Data Types/Data Structure (). Name it Supplier Spreadsheet Row.

Add flow linking the Write Supplier Record trigger to Supplier Spreadsheet Row.

The Write Supplier Record action process should look similar to the following:

Recall that in a previous stage we mentioned that a Data Structure and a Database Record are
practically identical, apart from the fact that the latter is automatically mapped to a table in the database.

The fields in this data structure should exactly match the columns names (the first row) of the
spreadsheet (see the screenshot above):

Zoom into Supplier Spreadsheet Row.

Add a Data Types/Text. Name it Company.

Add a Data Types/Text. Name it First Name.

Add a Data Types/Text. Name it Last Name.

Add a Data Types/Text. Name it Email.

Add a Data Types/Text. Name it Telephone.

The Write Supplier Record process should now look as follows:

The data in each Supplier Spreadsheet Row should be copied to a corresponding Supplier
record:

Zoom to Write Supplier Record.

Reuse the Supplier data structure from the repository/outline (find it in Manage
Suppliers view/Supplier List table).

Create flow linking the following:

Supplier Spreadsheet Row/Company to Supplier/Company Name

Supplier Spreadsheet Row/Email to Supplier/Email

Supplier Spreadsheet Row/Telephone to Supplier/Phone

The Write Supplier Record process should now look as follows:

Two additional fields should be populated in Supplier:

4. Id – A unique identifier for each supplier.

5. Contact Name – The Supplier record has a single field for storing the name of the
contact person as opposed to the spreadsheet where there are two fields, First Name and
Last Name. Therefore Contact Name should store the two fields joined together.

Id will be populated using the Sequence Number action. The same one used in Add Supplier
button/Enter New Supplier popup/Submit button:

Reuse Supplier Id by dragging it from the repository/outline.

Add flow linking Supplier Id/<Next> to Supplier/Id.

The Write Supplier Record process should now look as follows:

Using a Text Manipulation Template (to concatenate text values)

To join First Name and Last Name into a single text value (remember that there should also be
a space separating them), do the following:

Add a Text/Concatenate template ().

Create a flow linking Supplier Spreadsheet Row/First Name to Concatenate/Text 1.

Create a flow linking Supplier Spreadsheet Row/Last Name to Concatenate/Text 2.

Add a Constants/Text. Press [Space] once to create the “ “ constant, and create a flow
linking “ “ to Concatenate/<Separator>.

Create a flow linking Concatenate/<Concatenation> to Supplier/Contact Name.

The Write Supplier Record process should now look as follows:

Completing the Import process

To complete the import process, we need to take care of the following:

1. Insert Supplier records to the database.

2. Close the Select Suppliers Spreadsheet popup

3. Refresh the Supplier List table in the Manage Suppliers view.

To add Supplier records to the database:

Zoom to Write Supplier Record.

Add Database/Insert.

Create a flow linking Supplier to Insert/<Record>.

Add an Exit to Write Supplier Record.

Create flow linking the Insert/<Inserted> exit to the Write Supplier Record exit.

The Write Supplier Record process should now look as follows:

To wrap up the import process, closing the popup and refreshing the Supplier List, additional
flow must be defined:

Zoom out to Extract Spreadsheet Rows service. Add an exit to the process.

Create a flow linking the Write Supplier Record exit to the Extract Spreadsheet Rows
exit.

Zoom out to Import button.

Add a Display Actions/Close Window template. Add a Control trigger (through right-
click->Add Element or by simply adding a trigger).

Link the Extract Spreadsheet Rows exit to the trigger of Close Window.

Reuse the Refresh Supplier List process (used in Add Supplier button/Enter New
Supplier popup/Submit button) by dragging it from the repository/outline.

Link the Extract Spreadsheet Rows exit to the trigger of Refresh Supplier List.

The Import button model should now look as follows:

If you now save your work, you should automatically receive the following warning:

Clicking OK, the focus will switch to the Validation view:

The Validation view is the interface to a built-in utility, which checks your models and notifies you of
potential problems).
By default validation is run on every save, but you can run it independently, without saving, by

switching to the Validation view and clicking the Validate () toolbar button.

Click on the cell containing Extract Spreadsheet Rows (in fact you can click on any of
the cells except the one in the Ignored column).

The model editor will zoom to the Extract Spreadsheet Rows with the last flow arrow
highlighted in red to pinpoint the validation warning, as in the following screenshot:

The validation warning is caused by the fact that the flow arrow starts at a repetitive element
(the exit slot of the repetitive Write Supplier Record process) but terminates at a non-repetitive
element (the exit slot of the Extract Spreadsheet Rows process), as descibed in the Details
column of the Validation view.

This issue is designated a warning rather than an error, because in some modelling scenarios this
is actually the intended modelling. Indeed Extract Spreadsheet Rows is one such case,
therefore it should simply be ignored.

In order to avoid being reminded of this non-issue in future validations, you can request to hide
it in the future, as follows:

Click (again) on the row in the Validation view, to make sure it is selected.

Click the Ignore selected warnings () toolbar button.

To wrap up this stage, switch to the browser and review the results:

Click on the Purchaser perspective tab.

Press the Import Suppliers Data button.

In the Select Suppliers Spreadsheet popup press the Browse… button.

Navigate to [tersus root]/workspace/Tutorial 9-10 and select Suppliers.xls.

Press the Import button.

The resulting Supplier List should look similar to the following:

Completing Stage 10

Import the sample project Tutorial 10-11 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

You may now proceed to Stage 11, in which we shall model a table display using a different
technique which provides better control of its content.

See It Live

Object 9

Click here to open the live project in a separate window.

http://tutorials.tersus.com/10-11/

Stage 11 – Controlling Table Display

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling techniques: Controlling the columns appearing in a display

Useful display templates: Table, Number Display, Text Display

Application Functionality Modeled

We shall now begin modeling the issuing of Purchase Orders (POs) by purchasers. We shall
start with the display of a tabular list of requisitions approved by managers. This table will differ
from previously modeled tables – we will specify which columns to display and in which order,
instead of relying on defaults.

In the subsequent stages we shall add:

• An alert, displayed if any of the requisitions are marked as urgent, to prompt the
purchaser to process them.

• A list of issued POs for the currently selected requisition.

• An Order button to issue a purchase order to a supplier for the currently selected
requisition.

• After issuing a purchase order, the requisition is marked as (partially or fully) ordered.

This stage’s modeling should be performed in the Tutorial 10-11 project, you imported at the end of the
previous stage.

User Modeling

We start by adding a new view:

Zoom to Purchaser

Add Display/View. Name it Issue Purchase Orders.

Use a Table Template

Up to this point in the tutorial, whenever we wanted to display a tabular list of data, we used the
Simple Table template. The advantage of using this template is that it is very quick to model.
The disadvantage is that you have no control over which columns are displayed, and at what

order. There is also additional functionality we will require in upcoming stages which cannot be
implemented using a Simple Table, but rather using the Table template:

Zoom to Issue Purchase Orders.

Add a Display/Table template (). Name it Approved Requisitions List. Zoom into it.

The Purchaser model should look similar to the following:

The Table template comes pre-configured with a Row display element and a <Selected Row> display
data element (of the Row) display, which will be used in subsequent steps to design and control the table
display.

Use Number/Text/Date Display Templates

Define the columns, by inserting Text/Number/Date Display templates into the row, each
defining a cell in the row.

The name given to each element in the row will be used as the column heading, when the table
is displayed:

Add a Display/Number Display (). Name it Id.

Add a Display/Text Display (). Name it Description.

Add a Display/Date Display (). Name it Date.

Add a Display/Text Display (). Name it Urgency.

The Approved Requisitions List table model should look similar to the following:

The Number/Text/Date Display templates are similar to the Text Area input field we’ve previously
used: each contains a <Value> element, which holds its value and serves as the source/target of flows
which involve this value.
The difference is in the user interface aspects of the two: An input field provides the user with the ability
to change the value, whereas a display does not.

The flexibility of using the Table template now comes into play. We control which fields from
the database are displayed (Status in this case is not displayed), Also, we can explicitly define
the order by which columns are displayed.

Populate the Table (with requisitions)

As with the Simple Table, we should create a process that populates the table with values from
the database:

Zoom out to Issue Purchase Orders view.

Add a Basic/Action. Name it Populate Approved Requisitions List.

The Issue Purchase Orders view model should look similar to the following:

As we have done in previous cases, the Populate… process will have a Generate… process
which creates a display data element representing the table and outputs it to an ancestor
reference of the display:

Zoom into Populate Approved Requisitions List.

Add Basic/Action. Name it Generate Approved Requisitions List. Add an exit to it.

Add an ancestor reference of the Issue Purchase Orders view.

Create a flow linking the exit of Generate Approved Requisitions List to the Issue
Purchase Orders/Approved Requisitions List table.

The Populate Approved Requisitions List view model should look similar to the following:

The Generate Approved Requisitions List process retrieves all requisitions which have been
approved:

Zoom into Generate Approved Requisitions List.

Add a Database/Find. Add a trigger to it. Name the trigger Status.

Reuse the “Approved” constant (used in Manager system/Requisition Approval
view/Approve Requisition button). Create a flow linking it to Find/Status.

Drag Approved Requisitions List table from the repository/outline. Create flow from it
to the Generate Approved Requisitions List exit.

The Generate Approved Requisitions List view model should look similar to the following:

Up to this point, the Generate Approved Requisitions List process, is similar to other
Generate... processes we modeled. From this point on, the modeling changes. As the table will
not accept the records found directly, we must create a process that converts (or maps) the fields
of the Requisition database record to a Row display data element in the table:

Add a Basic/Action. Name it Convert Requisition Record to Row. Set it repetitive. Add
a trigger and exit.

Create a flow linking Find/<Records> to Convert Requisition Record to
Row/Record.

Create a flow linking the Convert Requisition Record to Row/Row exit to Approved
Requisitions List/Row.

The Generate Approved Requisitions List view model should look similar to the following:

And model the mapping from Requisition to Row:

Zoom into Convert Requisition Record to Row.

Drag a Requisition databased record from the repository/outline (it's reused in various
locations such as Open Requisitions view/Requisition List table). Create a flow linking
the process trigger to it.

Drag a Row from the repository/outline (this is the row in Approved Requisitions List
table). Create a flow linking it to the process exit.

Create the following flows:

Requisition/Id to Requisition Row/Id/<Value>

Requisition/Description to Requisition Row/Description/<Value>

Requisition/Date to Requisition Row/Date/<Value>

Requisition/Urgency to Requisition Row/Urgency/<Value>

The Convert Requisition Record to Row model should look similar to the following:

Save your work, and view the application in the browser.

Click on the Purchaser perspective tab.

Switch to the Issue Purchase Orders view.

You should see a list of (approved) requisitions, similar to the following:

Note that the requisition list displayed is different from previously modeled requisition lists,
specifically the absence of the Status column. In the subsequent stages we will utilize additional
features of the Table display, such as the ability to display computed values, and the ability to
perform an action when a row is selected.

Completing Stage 11

Import the sample project Tutorial 11-12 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the

end of Stage 2.

This sample project contains all the functionality modeled thus far.

You may now proceed to Stage 12, in which we will learn how to perform actions conditionally.

See It Live

Object 10

Click here to open the live project in a separate window.

http://tutorials.tersus.com/11-12/

Stage 12 – Controlling Application Flow

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Activated slots, Validation

Modeling techniques: Controlling process flow, Controlling popup appearance

Useful process templates: Branch

Useful display templates: Alert

Application Functionality Modeled

We shall continue modeling the issuing of Purchase Orders (POs) by the purchaser, by adding
the following features:

• An alert displayed when at least one of the requisitions is marked as urgent, prompting
the purchaser to process them.

• An Order button used to issue a purchase order to a supplier.

This stage’s modeling should be performed in the Tutorial 11-12 project, you imported at the end of the
previous stage.

User Modeling

Use a Branch Template

When the list of approved requisitions is displayed, we would like to check whether it includes
requisitions whose Urgency is Urgent.

This check should be performed immediately after the approved requisitions are retrieved from
the database:

Zoom to Generate Approved Requisition List.

We shall add a process which checks if a requisition is urgent:

Add a Basic/Action. Name it Check if Requisition is Urgent. Add to it a trigger and an
exit. Name the exit Yes. Mark the process as repetitive.

Create flow linking Find/<Records> to the trigger of Check if Requisition is Urgent.

Next we model the actual urgency check:

Zoom into Check if Requisition is Urgent.

Drag a Requisition database record.

Create a flow linking the trigger of Check if Requisition is Urgent to Requisition.

The Generate Approved Requisition List model should look similar to the following:

The check is performed using a new template Branch, which accepts a value as input and
activates the exit whose name matches the value.

Add a Flow Control/Branch template ().

Create a flow linking Requisition/Urgency to the <Selector> trigger of Branch.

We need to distinguish between Urgent and Normal values:

Rename (pressing [F2]) the Value 1 exit to Urgent, and Value 2 exit to Normal

Create a flow linking the Branch/Urgent exit to the Yes exit.

The Check if Requisition is Urgent model looks as follows:

When an urgent requisition is received, Branch will activate its Urgent exit, causing an
application flow that activates the Yes exit of Check if Requisition is Urgent.

Activating an exit means that regardless of whether the exit outputs a value or not, any flow originating
from it will be activated, so that if the exit is linked to a trigger, that trigger will also be activated, which
in-turn means that the process containing that trigger may be activated.

The functionality we are implementing does not need to perform anything when a non-urgent
requisition is retrieved; therefore no flow is defined from the Branch/Normal exit. The exit can
actually be deleted – we leave it here to improve the model’s readability and for possible future
enhancements of the model.

Use an Alert Template (to display an alert to the user)

If the Check if Requisition is Urgent/Yes exit is activated at least once, we would like to
display an alert to the user. This is done using the Alert template.

Before we use the alert template, we should consider where in the model to position it. There are
3 options:

1. Check if Requisition is Urgent – in which case the alert will be displayed repeatedly for
each urgent requisition.

2. Generate Approved Requisitions List – in which case the alert will be displayed only
once, regardless of the number of urgent requisitions, but before the requisition list is
populated (which occurs outside the process).

3. Populate Approved Requisitions List – in which case the alert will be displayed
simultaneously with the requisition list being populated.

The third option seems the most plausible:

Zoom out to Generate Approved Requisition List.

Add an exit to it. Name it Urgent Requisitions Found.

Create a flow linking the Check if Requisition is Urgent/Yes exit to the Generate
Approved Requisition List/Urgent Requisition Found.

The Generate Approved Requisition List model should look similar to the following:

The alert will be displayed using the Alert template:

Zoom out to Populate Approved Requisition List.

The alert needs a message to feed its <Message> trigger:

Add a Constants/Text. Name it Urgent requisitions are waiting to be processed.

Create a flow linking the constant to Alert/<Message>.

The Alert will ultimately be activated by activating the constant holding it’s message:

Create a flow linking Generate Approved Requisition List/Urgent Requisition Found
to the “Urgent requisitions are waiting to be processed” constant.

The Populate Approved Requisition List model should now look similar to the following:

Save your work, and view the application in the browser.

Click the Purchaser perspective tab.

Click the Issue Purchase Orders view tab.

You should see an alert popup, as in the screenshot below.

Display a Popup Conditionally

We shall now add an Order button to the view. It will be used in subsequent stages to issue a
purchase order for a selected requisition:

Zoom out to the Issue Purchase Orders view.

Add a Display/Row. Name it Button Row. Zoom into it.

Add a Display/Button. Name it Order.

The Issue Purchase Orders view model should now look similar to the following:

This button should open a popup for entering purchase orders, but it makes sense only if a
requisition has been selected from the list:

Zoom into the Order button.

Add an ancestor reference to the Issue Purchase Orders view.

Add a Display/Popup. Name it Create Purchase Order. Add a trigger to it.

Create a flow linking Issue Purchase Orders/Approved Requisitions List/Selected
Row to the trigger of Create Purchase Order.

The Order button model should look similar to the following:

The Create Purchase Order popup will only open if Get Table Selection exits through the
<Selected Row> exit, and since the selected Requisition Row data structure is also passed in

the flow, we will have immediate access the details of the selected requisition inside Create
Purchase Order, without having to retrieve it again.

Save your work, and view the application in the browser.

Click the Purchaser perspective tab.

Click the Issue Purchase Orders view tab.

Click the Order button (before selecting a row).

Nothing should happen, as no row has been selected.

Select a row from Requisition List.

Click the Order button.

The Create Purchase Order popup should appear looking similar to the following:

Completing Stage 12

Import the sample project Tutorial 12-13 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality, as follows:

1. Add display elements, for displaying Requisition details in the Create Purchase Order
popup. Initialize it with data from the selected row.

How to Model Located in

Add Display/Row. Name it Requisition Row.

Add a Basic/Action. Name it Initialize. Add to it a trigger.

Create a flow linking the trigger of Create Purchase
Order to the trigger of Initialize.

Create Purchase Order
popup

Add a Display/Label. Name it Requisition.

Add a Display/Number Display. Name it Id.

Requisition Row

Add a Display/Label. Name it – (hyphen).

Add a Display/Text Display. Name it Description.

Drag a Requisition Row (to create a display data element).
Link the trigger of Initialize to it.

Add an ancestor reference to the Create Purchase Order
popup.

Link Requisition Row/Id/<Value> to Create Purchase
Order/Requisition Row/Id/<Value>.

Link Requisition Row/Description to Create Purchase
Order/Requisition Row/Description/<Value>.

Initialize process

2. Add a Details input field to the Create Purchase Order popup. Initialize the Details field
with the Requisition’s Description

How to Model Located in

Add Display/Row. Name it Details Row. Create Purchase Order
popup

Add Display/Label. Name it Order Details:. Details Row

Add Display/Text Input Field. Name it Details.

Link Requisition Row/Description/<Value> to Create
Purchase Order/Details Row/Details/<Value>.

Initialize process

3. Add a Price input field to the Create Purchase Order popup.

How to Model Located in

Add Display/Row. Name it Price Row. Create Purchase Order
popup

Add Display/Label. Name it Order Price:.

Add Display/Number Input Field. Name it Price.

Price Row

4. Create a Submit Order button, used after selecting a supplier to issue the purchase order.

How to Model Located in

Rename the OK button to Submit Order. Create Purchase
Order/Footer

Add Display Actions/Close Window.

Add a Control trigger (through Add Element).

Submit Order button

Note that in the sample project provided, the application model includes a validation warning,
due to the fact that the Close Window sub-process of the Submit Order button has a mandatory
trigger (Control) with no flow into it, which means that as it stands, clicking the Submit Order,
will not close the popup.
This issue will be solved in the next stage, once flow is defined in the next stage.

You may now proceed to Stage 13, in which we are going to learn techniques for managing
relational data.

See It Live

Object 11

Click here to open the live project in a separate window.

http://tutorials.tersus.com/12-13/

Stage 13 – Modeling Relational Data

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: Service vs. Action processes, Automatic transaction support,
<Done> exit

Modeling techniques: Modeling relational data, Maintaining referential integrity,
Chooser based on a composite data structure

Useful process templates:Service

Application Functionality Modeled

The sample project you have loaded contains modeling of the Create Purchase Order popup
user interface:

• The selected requisition’s Id and Description.

• A Details input field. Initialized with the requisition’s description, in case the purchase
order’s content is identical to the requisition. The purchaser may update the purchase
requisition details.

• A Price input field (the order’s total price).

• A Submit Order button, which contains a Close Window process that is not executed
since it has no flow attached to it.

If you view the application in the browser, it should look as follows:

The Create Purchase Order popup needs additional modeling:

4. A Supplier chooser displaying a list of suppliers retrieved from the Supplier database
table.

5. The Submit Order button needs additional modeling to handle database operations:
storing the purchase order details entered by the user and updating the requisition to
signify that an order has been issued.

This stage’s modeling should be performed in the Tutorial 12-13 project, you imported at the end of the
previous stage.

User Modeling

Use a Chooser Based on a Data Structure

We would like to add a drop-down list displaying a list of suppliers:

Zoom to Create Purchase Order popup.

Add a Display/Row. Name it Supplier Row. Zoom into it.

Add Display/Label. Name it Order From:.

Add Display/Chooser. Name it Supplier.

The Create Purchase Order popup model should look similar to the following:

Recall that when we previously used the Chooser display (to specify requisition urgency), we
populated it with text values (“Regular” and “Urgent”) – defined as constants.

This time the values to be displayed in the chooser, the supplier names, must be retrieved from
the Supplier table. We will populate Supplier/<Options> with Supplier records we retrieve
from the database, and the chooser will automatically display the company name of each
supplier (since Company Name is the first text field in the Supplier data structure):

Zoom to the popup's Initialize process.

Add a Database/Find.

Drag a Supplier database record (used in the Manage Suppliers view, Supplier List
table) from the outline/repository. Set it repetitive.

Create a flow linking Find/<Records> to the Supplier data structure.

Create a flow linking the Supplier data structure to Create Purchase Order/Supplier
Row/Supplier/<Options>.

The Initialize model should look similar to the following:

Notice that while the drop-down list displays only the company name of each supplier, once the
user chooses a supplier, Supplier/<Value> will hold the selected supplier’s record in full (we
will be interested in the Supplier/<Value>/Id field later), without having to retrieve the details
once more from the database.

Save your work, and view the application in the browser. It should look similar to the following:

Use a Service Template (when a process must run on the server)

Now we turn to completing the modeling of the Submit Order button. We shall add a process

to the Submit Order button, to handle the database issues mentioned above.

Up to this point in the tutorial, we primarily used the Action template as a container for our
modeling. Using Action as a container lets the Tersus runtime engine decide where each of its
sub-models is to be executed – on the client or on the server.

In most situations it is obvious where a process should be executed. When its purpose is to
display (or reference) user interface elements, it must, and will automatically, execute on the
client (browser). Opposite examples are the various database actions, which are always executed
on the server.

There are, however, situations where a process can be executed on both tiers, and in these
situations, the Tersus runtime engine will execute processes on the client side, unless they are
explicitly assigned by the modeler to run on the server. The main factor in the modeler’s
decision where a process should be executed is performance. As a rule of thumb, it is a good
idea to locate processes manipulating a lot of data or accessing centrally managed data on the
server tier. When there is a process with a lot of internal flow of data, and some of its sub-
processes are server-side only, it makes sense to perform the whole process on the server, to
avoid a lot of traffic between the server and the client.

Aside from performance issues, there are other situations where running a model on the server
side is recommended if not imperative. One of these situations is the case of database
transactions. When the model performs multiple database operations, such as updates to
multiple records in one or more tables in a database and these updates are related to one another,
all updates must either succeed or fail, as one.

Tersus provides an automated transaction mechanism. Assigning a process to run on the server
ensures that when it is called from a client process, a separate database transaction will be
opened. The transaction will be committed if and only if the process is successful (and it will be
rolled back if the process is not successful).

To define that a process is to be executed on the server, use the Service template:

Zoom to Submit Order.

Add Basic/Service (). Name it Handle Database. Zoom into it.

The Handle Database process will include 2 sub-processes, one to handle the purchase order,
and the other to handle the requisition’s status update:

Add a Basic/Action. Name it Insert Purchase Order.

Add a Basic/Action. Name it Update Requisition.

The Submit Order button model should look similar to the following:

Note that both sub-processes are based on the generic Action template, and not the Service template –
they will execute on the server, because they are contained in Handle Database, which is a Service.
Both sub-processes do not create separate transactions. They are included in the parent transaction, so
the insert and update will either both succeed or both fail.

Define a Database Record (for the purchase order)

Begin with the definition of the Purchase Order database record:

Zoom into Insert Purchase Order.

Add a Data Types/Database Record. Name it Purchase Order. Zoom into it.

Each purchase order should include the following data:

1. A unique identifier:

Add Data Types/Number. Name it Id.

2. The requisition for which the purchase order is issued. We shall store the requisition’s
identifier identifying it in the Requisitions table:

Add Data Types/Number. Name it Requisition Id.

3. The supplier to which the purchase order is issued. We shall store the supplier’s
identifier identifying it in the Suppliers table:

Add Data Types/Number. Name it Supplier Id.

Readers inexperienced with relational data models may find it surprising that we are storing the Ids of

the Requisition & Supplier, instead of the actual data which will be displayed to the user when
referencing a purchase order (in the case of the Supplier table this will usually be Company Name or
Contact Name). In fact, this is the correct way to model relational data, since the Id will never change,
whereas the details may change frequently (Contact Name is a good example). Once you have the Id at
hand, it is very easy to find and display all supplier details.

4. The details of the purchase order:

Add Data Types/Text. Name it Details.

5. The date of issuing the order:

Add Data Types/Date.

6. The price agreed with the supplier:

Add Data Types/Number. Name it Price.

7. The order’s status (issued or delivered):

Add Data Types/Text. Name it Status.

The Insert Purchase Order model should look similar to the following:

Positioning an Ancestor Reference Correctly (not in a service)

Now that the Purchase Order data structure is defined, we should populate it with the relevant
data, part of which comes from the Create Purchase Order popup, so we need to use an
Ancestor Reference.

The question is where in the model should this data population process be located?

We might want to place it in the Insert Purchase Order process, but since the process is
executed on the server, it cannot reference the popup (a client side element) directly. The
solution is to place the ancestor reference in an ancestor process and pass the data to the process
through triggers. Since the process’ grandparent (Handle Database) is a Service process, we
shall place the ancestor reference in the “great-grandparent” process:

Zoom out to Submit Order.

Add an ancestor reference to Create Purchase Order.

There are four data elements which we need to retrieve from the display: The requisition’s
identifier, the chosen supplier’s identifier, the purchase order details, and the price. We shall add
a process which creates the database record and passes it to Handle Database and into Insert
Purchase Order, so flow and triggers must be defined:

Add a Basic/Action. Name it Create Purchase Order Record.

Add 4 triggers to Create Purchase Order Record. Name them Requisition Id, Supplier
Record, Details and Price.

Create the following 4 flows:

Source (in Create Purchase Order) Target (Create Purchase Order
Record trigger)

Requisition Row/Id/<Value> Requisition Id

Supplier Row/Supplier/<Value> Supplier Record

Details Row/Details/<Value> Details

Price Row/Price/<Value> Price

Add an exit Create Purchase Order Record. Create a flow linking the exit to the
Handle Database/ trigger.

The model should look as follows:

Populate the Purchase Order Record (with purchase order details)

Zoom into Create Purchase Order Record.

Drag a Purchase Order database record from the repository/outline.

Create a flow linking Purchase Order to the Create Purchase Order Record exit.

1. The Requisition Id should be set to the Id of the Requisition data structure received
through the Requisition Id trigger:

Create a flow linking the Requisition Id trigger to Purchase Order/Requisition Id.

2. The Supplier Id should be set to the Id of the supplier selected by the user. In our case,
the drop-down list was populated with Supplier database records, so we can extract the

Id from the selected record:

Drag a Supplier data structure from the repository/outline.

Create a flow linking the Supplier Record trigger to the Supplier data structure.

Create a second flow linking Supplier/Id to Purchase Order/Supplier Id

3. The Details should be set to the text entered by the user in the popup, which is passed
through the Details trigger:

Create a flow linking the Insert Purchase Order/Details trigger to Purchase
Order/Details.

4. The Price should be set to the value entered by the user in the popup, which is passed
through the Price trigger:

Create a flow linking the Insert Purchase Order/Price trigger to Purchase
Order/Price.

5. The Date field should be set to today’s date:

Add a Dates/Today.

Create a flow linking Today/<Today> to Purchase Order/Date.

6. The purchase order’s Status should be set as issued:

Add a Constants/Text. Name it Issued.

Create a flow linking “Issued” to Purchase Order/Status.

The Create Purchase Order Record process model should look similar to the following:

Notice that the Purchase Order/Id field has not been set. This is because it should be a unique
identifier set using a Database/Sequence Number and therefore should be part of the database
transaction, which means it must be set in the Handle Database service.

Zoom to Handle Database.

Add a trigger to Insert Purchase Order.

Create a flow linking the Handle Databae trigger to the Insert Purchase Order trigger.

Zoom into Insert Purchase Order.

Create a flow linking the Insert Purchase Order trigger to the Purchase Order
database record.

Add Database/Sequence Number. Name it Purchase Order Id.

Create a flow linking Purchase Order Id/<Next> to Purchase Order/Id.
The Handle Database process model should look similar to the following:

Now that the Purchase Order database record is fully populated, we can add it to the Purchase
Orders table:

Zoom to Insert Purchase Order.

Add a Database/Insert.

Create a flow linking the Purchase Order data structure to Insert/<Record>.

The Insert Purchase Order process should look as follows:

Update the Requisition

Now we move to the Update Requisition process. The requisition should be updated with a
new status that signifies an order has been issued for that requisition. The requisition’s identifier
is available in the Purchase Order record we created, so:

Zoom to Handle Database.

Add a trigger to Update Requisition.

Create a flow linking the Handle Database trigger to the Update Requisition trigger.

Zoom into Update Requisition.

Drag a Purchase Order database record from the repository/outline.

Create a flow linking the Update Requisition trigger to the Purchase Order database
record

The Handle Database process model should look similar to the following:

We need to retrieve the requisition from the database and update its status:

Zoom to Update Requisition.

Add a Display/Find. Add a new trigger. Name it Id.

Create a flow linking Purchase Order/Requisition Id to Find/Id.

The Update Requisition model should look similar to the following:

We can reuse Change Requisition Status, a process we modeled in a previous stage (in
Manager system/Requisition Approval view/Button Row/Approve Requisition
button/Update Requisition process) in order to perform the requisition status update:

Drag Change Requisition Status from the repository/outline.

Create a flow linking the Find/<Records> to Change Requisition Status/Original
Requisition.

Add a Constants/Text. Name it Order Issued.

Create a flow linking “Order Issued” to Change Requisition Status/Updated Status.

Finally we need to perform the update in the database:

Add a Database/Update.

Create a flow linking Change Requisition Status/Updated Requisition to
Update/<Record>.

The Update Requisition process should look similar to the following:

Use a <Done> Exit (to specify the order of execution)

Now that the database issues are taken care of, we should take care of one last issue – ensuring
that Close Window executes only after Handle Database has finished:

Zoom out to Submit Order.

Right-click Handle Database. From the Add Element sub-menu Select the <Done>
exit.

Create flow linking Handle Database/<Done> to the trigger of Close Window

The Submit Order process should look similar to the following:

Naming a process’ exit <Done> ensures that it will be activated when the process has completed
executing, even though there is no flow (inside Handle Database) activating it. If the exit is
named anything but <Done> (or remains unnamed), it will not be activated.

An alternate method to creating the <Done> method would be to add a regular exit, and name it
<Done>. You will then need to set the exit's type to Nothing, by selected Data Types/Nothing and
dropping it on the exit. You can see a slot's type, when you rename it (the type is the Model Name).

Save your work, and launch the application in a browser.

Click the Purchaser perspective tab.

Click the Issue Purchase Orders view tab.

Select a row from Requisition List.

Click the Order button.

Select a Supplier and enter Price.

Click the Submit Order button.

In the next stage we shall model the display of purchase orders related to each requisition.

Completing Stage 13

Import the sample project Tutorial 13-14 and use it as the basis for the next stage of the tutorial.

For a reminder on how to import a sample project, see the Importing a Sample Project section at the
end of Stage 2.

This sample project contains all the functionality modeled thus far.

The sample project also includes additional functionality, as follows:

1. Add a second table displaying purchase orders to the Issue Purchase Orders view.

How to Model Located in

Add Display/Table. Name it Purchase Order List. Issue Purchase Orders
view

Add a Display/Number Display. Name it Id.

Add a Display/Text Display. Name it Supplier.

Add a Display/Text Display. Name it Details.

Add a Display/Date Display. Name it Date.

Add a Display/Number Display. Name it Price.

Purchase Order List
table/Row

2. Add columns to the Approved Requisitions List table.

How to Model Located in

Add a Display/Number Display. Name it PO Count.

Add a Display/Number Display. Name it Total Price.

Approved Requisitions
List table/Row

3. Update Generate Approved Requisitions List to include requisitions with status Order
Issued.

How to Model Located in

Replace Find with Database/Advanced Find.

Re-link flows from the Advanced Find/<Records> exit.
Add 2 triggers; name them Status 1 and Status 2.

Link “Approved” to Status 1.

Drag “Order Issued”. Link it to Status 2.

Add Constants/Text. Name it Status=${Status 1} or
Status=${Status 2}. Link it to <Filter>.

Generate Approved
Requisitions List process

You may now proceed to Stage 14, in which we are going to make use of the Purchase Order
List table to display purchase orders linked to the currently selected requisition and calculate
purchase order totals for each requisition.

See It Live

Object 12

Click here to open the live project in a separate window.

http://tutorials.tersus.com/13-14/

Stage 14 – Displaying Multiple (Linked) Tables

Stage Goals

Tersus Concepts Covered

On completion of this stage you should be familiar with the following concepts:

Modeling notions: <On Click> process

Modeling techniques: Displaying one-to-many relationship, summing

Useful process templates: Count, Sum

Useful display templates: Refresh

Application Functionality Modeled

We shall continue with modeling the Issue Purchase Order View.

In the previous stage, we modeled the relationship between a purchase order and a requisition.
Specifically the modeling is of a one-to-many relationship, where multiple purchase orders may
be related to the same requisition, each containing some of the requested items.

The sample project you have loaded includes the following additions to the Issue Purchase
Order view:

• A purchase order (PO) list appearing under the requisition list.

• 2 new columns added to the requisitions list: PO Count & Total Price

These additions to the view, do not display any data yet. We need to model the following:

6. Whenever a requisition is selected in the requisition list, the PO list is updated with the
POs linked to the selected requisition.

7. Calculate PO Count and Total Price for each requisition, counting the number of POs
linked to each requisition, and calculating their total price.

This stage’s modeling should be performed in the Tutorial 13-14 project, you imported at the end of the
previous stage.

User Modeling

<On Click> Process (to execute a process when a row is clicked)

Our first task is to create a process that updates the purchase order list when a requisition is
clicked in the requisition list.

Tersus supports this through a process with a reserved name – <On Click>:

Zoom to Approved Requisitions List/Row.

Add a Basic/Action. Name it <On Click>.

Alternatively, you can add the <On Click> process, by opening (through right-click) the Row element's
context menu and selecting it from the Add Element sub-menu.

This is another example of a situation where a table display cannot be based on the Simple Table
template – since the <On Click> process is part of the Row display element, while a Simple Table
contains just a data structure.

The Approved Requisitions List model should look similar to the following:

The <On Click> process should retrieve all purchase orders which are linked to the clicked
requisition, so it first needs to get the Id of the requisition represented in this row. The
requisition id for the the clicked row is available through an ancestor reference:

Zoom into <On Click>.

Add ancestor reference of Row.

Now we should create a sub-process which receives the requisition’s Id and populates the
Purchase Order List with the matching purchase orders:

Add a Basic/Action. Name it Display Purchase Orders for Requisition.

Add a trigger to it, and create a flow linking Requisition Row/Id/<Value> to the trigger.

The <On Click> model should look similar to the following:

We will retrieve any purchase order whose Requisition Id field matches the Id of the current
requisition:

Zoom into Display Purchase Orders for Requisition.

Add a Database/Find.

Add a trigger to it. Name it Requisition Id. Create a flow linking the trigger of Display
Purchase Orders for Requisition to it.

The purchase orders retrieved should be converted into rows in the Purchase Order List table:

Add a Basic/Action. Name it Convert Purchase Order Record to Row. Mark it
repetitive. Add to it a trigger and an exit. Create a flow linking Find/<Records> to the
trigger.

The Display Purchase Orders for Requisition model should look similar to the following:

Zoom into Convert Purchase Order Record to Row.

Drag a Purchase Order data structure from the repository/outline (it's available in
Order button/Create Purchase Order popup/ Submit Order button). Add a flow
linking the trigger of Convert Purchase Order Record to Row to the data structure.

Drag Purchase Order List/Row from the repository/outline (to create a display data
element). Add a flow linking it to the exit of Convert Purchase Order Record to Row.

Create the following flows to map the fields of the purchase order database records to the
fields of the rows in the display table:

Source Target

Purchase Order/Id Row/Id/<Value>

Purchase Order/Date Row/Date/<Value>

Purchase Order/Details Row/Details/<Value>

Purchase Order/Price Row/Price/<Value>

The Convert Purchase Order Record to Row model should look similar to the following:

There’s one additional field in the Row which we have not yet populated: The Supplier field.
The Purchase Order data structure has a Supplier Id field which contains a numeric identifier
of the supplier, which is not informative. Instead, we should display the supplier’s company
name from the Supplier table in the database:

Zoom into Convert Purchase Order Record to Row.

Add a Basic/Action. Place it in between the Purchase Order database record and the
Row display data element. Name it Get Supplier Name from Id. Add to it a trigger and
an exit.

Create a flow linking Purchase Order/Supplier Id to the trigger of Get Supplier Name
from Id.

Create a flow linking the exit of Get Supplier Name from Id to
Row/Supplier/<Value>.

The Convert Purchase Order Record to Row model should look similar to the following:

Zoom into Get Supplier Name from Id.

Add a Database/Find. Add to it a trigger and name it Id. Create a flow linking the
trigger of Get Supplier Name from Id to Find/Id.

Drag a Supplier database record (it's available in Manage Suppliers view/Supplier List
table, among other locations) into Get Supplier Name from Id. Create a flow linking
Find/<Records> to Supplier.

Note that although the <Records> exit is a repetitive exit, it is linked to a non-repetitive target data
structure. This is not a problem because we’re using Id as the retrieval criteria for the Find process, and
since Id is unique, the process will never return more than one record.

Create a flow linking Supplier/Company Name to the exit of Get Supplier Name from
Id.

The Get Supplier Name from Id model should look as follows:

You've probably noticed that the Find element we've just added, appear slightly different than usual,
displaying 2 names: Find [Find 2].
Find, is the Element Name. Find 2, appearing in square brackets, is the Model Name. As explained
previously (See Stage 2), elements have both a Model Name and Element Name defined automatically
– but since they are usually identical, they are usually displayed as one.
When adding an element to the model, the Tersus Studio will automatically modify either of the names
in order to maintain uniqueness, by adding an index number, in cases where the name provided by the
user is already in use.
In the current scenario, the Find element in Get Supplier Name from Id is stored (by default) in the
Approved Requisitions List package (check this by right-clicking Find in the model editor and
selecting Show in Repository Explorer). This package already contained a model called Find (the one
we created in Display Purchase Orders for Requisition just beforehand), and so the newer Find must
have a different Model Name.

To wrap up the modeling of Display Purchase Orders for Requisition, we need to send the
created rows to the display:

Zoom out to Display Purchase Orders for Requisition.

Add an ancestor reference to the Issue Purchase Orders view.

Create a flow linking the Convert Purchase Order Record to Row exit to Issue
Purchase Orders/Purchase Order List/Row.

The Display Purchase Orders for Requisition model should look similar to the following:

Note that we are now using a different method to populate a table with rows (compared to the
various Populate… processes we modeled in previous stages): Instead of sending the rows to an
intermediate Purchase Order List data element which is then sent to the display ancestor
reference, the rows are sent directly to the display.

The model is simpler then previously modeled Populate… processes, but has one behavioral
difference which needs to be addressed: Since the display is now updated at the row level and
not at the table display level, the rows are accumulated by the repetitive row element, meaning
that if rows were displayed in the table before the process was executed, the new rows created
by the process will be added to the existing rows, instead of replacing them.

The solution is to make sure that the table is cleared, before the display is updated:

Create a Remove flow, linking the trigger of Display Purchase Orders for Requisition
to Issue Purchase Order/Purchase Order List/Row.

The resulting model should look similar to the following:

You might think that we could have set the source of the remove flow from the Find/<None> exit (as
we did in the various Generate ... models previous modeled), but that would actually be the wrong thing
to do, since it would only clear the table in those cases where Find did not locate any purchase orders,
and so will not clear the table when records are found, causing duplicates to appear.
Setting the remove source as we did, ensures that clearing the table occurs regardless of Find's result,
and actually before Find is executed.

Save your work, and view the application in the browser.

If you click on a requisition with issued purchase orders, they should appear in the lower table,
in a similar fashion to the following:

Add a Process (to calculate PO aggregates for each requisition)

Approved Requisitions List has 2 columns, PO Count and Total Price, which are currently
empty. We shall now calculate these aggregate values for each requisition. These aggregates
will be calculated on the fly for all requisitions in the requisition list:

Zoom to Issue Purchase Orders/Populate Approved Requisitions List/Generate
Approved Requisitions List/Convert Requisition Record to Row.

The Convert Requisition Record to Row model currently looks similar to the following:

We’ll add to it a sub-process which calculates the aggregates for a given requisition:

Add a Basic/Action template. Name it Calculate PO Aggregates for Requisition.

Add a trigger to the process. Name it Requisition Id. Create a flow linking
Requisition/Id to it.

Add an exit to the process. Name it PO Count. Create a flow linking it to Requisition
Row/PO Count/<Value>.

Add a second exit to the process. Name it Total Price. Create a flow linking it to
Requisition Row/Total Price/<Value>.

The process should retrieve all purchase orders for the given requisition:

Zoom into Calculate PO Aggregates for Requisition.

Add a Database/Find template. Add a trigger, named Requisition Id. Create a flow
linking the Calculate PO Aggregates for Requisition/Requisition Id trigger to it.

The Convert Requisition Record to Row model should now look similar to the following:

We are actually interested in 2 separate results based on the Find process:

2. Counting the number of returned Purchase Order records – this is the PO Count.

3. Summing the Price of each returned Purchase Order record – this is Total Price.

Use a Count Template (to count the number of records found by Find)

To count the number of records returned by Find, use the Count template, which counts the
number of objects sent to its trigger (or triggers):

Add a Collections/Count (). Delete the unnamed non-repetitive trigger, leaving the
repetitive List trigger intact.

Create a flow linking Find/<Records> to Count/List.

Create a flow linking Count/<Occurrences> to the Calculate PO Aggregates for
Requisition/PO Count exit.

The Calculate PO Aggregates for Requisition model should now look similar to the
following:

Count does just that; it counts all objects sent to it, and when no more objects are sent,
it outputs the object count.
Note that Collections/Count has a similar icon to Database/Sequence Number -
make sure you do not mix them up.

Use a Sum Template (to calculate the total price of a requisition)

To calculate the total price of a requisition, we first need to extract the price for each purchase
order:

Drag a Purchase Order data structure from the repository/outline. Set it repetitive.
Create a flow linking Find/<Records> to it.

We shall use the Sum template to calculate the total price for the requisition.

Add a Math/Sum ().

Create a flow linking Purchase Order/Price to Sum/Numbers.

Create a flow linking Sum/<Sum> to Calculate PO Aggregates for Requisition/Total
Price.

The Calculate PO Aggregates for Requisition model should look similar to the following:

Save your work, and view the application in the browser, which should display aggregates for
requisitions with issued orders, similar to the following:

Use a Refresh Template (to refresh data in your display)

When the Issue Purchase Orders view is opened, and the Approved Requisitions List table is
populated, the aggregates are shown correctly. However, when a new order is issued, the display
(including the aggregates) is not updated.

In previous stages we've reused the Populate... process to update the table, and although we
could do the same here, that will not be sufficient, since it does not clear the table (although that
could be fixed). There's also the issue of the Purchase Order List table, which should be
cleared since no requisition is selected.

An alternative strategy would be to force the view to completely refresh, as follows:

Zoom to Submit Order button.

Add a Basic/Action. Name it Refresh Issue Purchase Orders View. Add a Control
trigger and a <Done> exit to it (using the Add Element context sub-menu).

Select the flow linking the Handle Database/<Done> exit to the Close
Window/Control trigger, and drag the target to the Refresh Issue Purchase Orders
View/Control trigger.

Create flow linking the Refresh Issue Purchase Orders View/<Done> exit to the Close
Window/Control trigger.

The Submit Order button model should look similar to the following:

Zoom into Refresh Issue Purchase Orders View.

Add an ancestor reference to the Issue Purchase Orders view.

Add a Display Actions/Refresh ().

Create flow linking Issue Purchase Orders to Refresh/<Element>

The Refresh Issue Purchase Orders View model should look similar to the following:

The Refresh action reloads the display element passed to it, clearing the display element in question and
executing any processes it contains – this is identical to the behavior when the element is loaded in the
first place.

Save your work, and view the application in the browser.

Create a new order and note that the aggregates for the requisition in question are updated

Completing Stage 14

Import the sample project Requisition Management System.

If you installed the Tersus Studio using the installer, there is no need to import the project and it should
be available in your workspace.
If you do need to import the project, see the Importing a Sample Project section at the end of Stage 2.

This project contains all the functionality modeled thus far plus additional functionality required
to complete the application.

Take a look at the added Manage Purchase Orders view model, which implements the
following functionality:

3. A list of issued purchase orders

4. An Order Received button

The Order Received button does the following:

4. Updates the status of the selected purchase order to Received.

5. If the requisition to which the purchase order belongs has additional purchase orders not
yet received, then it changes the status of the requisition to Partly Fulfilled. Otherwise,
the status of the requisition is changed to Fulfilled.

6. Refreshes the display of purchase orders.

See It Live

Object 13

Click here to open the live project in a separate window.

http://tutorials.tersus.com/Final/

Appendix A – Tersus Studio Features and Tools

Appendix Goals

This appendix provides a general introduction to the Tersus Studio, and the different tools
provided to support modeling, such as the Model Editor, Outline, Repository Explorer,
Template Library, and embedded application and database servers.

The Eclipse Platform

The Tersus Studio uses the Eclipse platform, which is an industry standard IDE framework,
providing various features and significant flexibility, through the menus and toolbar, including
the possibility to rearrange the display to suit your taste.

The Eclipse platform uses the notion of a Perspective displaying one or more Views, arranged
in a specific way. Switching between perspectives changes the make-up and arrangement of
views. The screenshot above displays the Tersus Modeling perspective which, by default,
includes the following views: Model Editor, Palette, Outline, Repository Explorer,
Properties and Validation.

• To switch to a different perspective, use Window -> Open Perspective

• To change the arrangement of views in a perspective, click on a specific view’s title bar,
drag it around and drop it in its new position.

For further information regarding the features provided by Eclipse, see the Eclipse platform help
system (accessible through Help -> Help Contents).

Before we continue, make sure the Tersus Modeling perspective is displayed. To find out
which perspective is currently in use, take a look at the Eclipse window title bar. If it does not
start with “Tersus Modeling …”, then another perspective is currently displayed. If this is the
case:

Select Window -> Open Perspective -> Tersus Modeling

Or, if the Tersus Modeling option does not appear:

Select Window -> Open Perspective -> Other…

Select Tersus Modeling from the list, and click OK.

Eclipse should switch to the Tersus Modeling perspective, displaying the perspective name on
Eclipse window title bar.

Creating a New Project

To start a new Tersus project do the following:

Select File -> New

The following submenu will appear:

Select Tersus Project.

Note that there are two Project options in the menu – make sure you chose the first one (Tersus Project)
rather than the second (Project ...).

The following dialog box will appear:

Enter a Project name for your new project: My Project.

Press the Finish button to create your first Tersus project.

You should see the following:

You can use the My Project project you have just created to test the different platform features
discussed in this stage.

Familiarizing Yourself with the Model Editor

The Palette

On the right side of the Model Editor you can see the Palette ().

The palette contains four types of elements:

8. Editing Tools

Used to define and control the layout of elements in the editor.

 (Select) Selects and moves elements in the editor.

 (Marquee) Selects all elements in the specified region of the editor.

 (Flow) Creates a (regular) flow between elements in the editor.

 (Remove) Creates a remove flow between elements in the editor.

 (Note) Adds a note (documentation/comment) to an existing element in the editor

4. Slots

Used to define input/output “ports” of processes.

 (Trigger) A port used to activate and pass input into a process

 (Exit) A port used to pass output from a process

 (Error Exit) A port used to pass errors (exception) from a process

5. Template Library

Templates are predefined elements which serve as building blocks for modeling. There
are several categories of templates (such as Data Types, Database, Display etc.), and
each category contains several templates.

7. Search button ()

Provides the option to search for a specific template in the palette by name (or part of it).

Inserting a New Element to the Model

When you select a template from the Palette and return to the editor, the mouse pointer changes
to signify that a new element is going to be inserted into the model. There are 2 methods of
insertion from the palette:

5. Click – Creates a new element with default size (hinted by a dashed rectangle).

6. Click & drag – Creates a new element with the size specified by the user.

New elements may also be inserted from the Repository and the Outline, using drag-and-drop.
They will be created with a default size.

Selecting an Element

When you click on an element displayed in the editor, it becomes selected, marked with a frame,
as in the following screenshot:

Selecting multiple elements is possible using the following methods:

6. After selecting the first element, hold down the [CTRL] key and continue to select
additional elements.

7. Use the Marquee tool () in the palette to specify a selection area in the editor. All
elements in the marked area will be selected.

Moving an element

When an element has been selected, drag it around to change its position in the editor.

Resizing an element

After an element has been selected it can be resized by dragging any of the 8 selection anchors
which appear around the selection frame.

Certain types of elements (specifically Display, Process and System elements) resize differently
when the corner anchors are used. These elements may contain other elements, therefore when
the corner anchors are used to resize, the aspect ratio of the element and its sub-elements (width-
to-height ratio) is maintained.

Drill-down

Models are hierarchical, meaning that an element may contain other elements (making up sub-
models), and each of these sub-elements can in-turn contain additional sub-models, and so on.

The model editor provides drill-down functionality which lets us view the different parts of the
model at different levels of detail.

There are 2 methods to drill-down (or up):

7. Expand/Collapse – elements in the model which contain other elements, display a small
 (expand button) or (collapse button). Clicking on the expand/collapse button will

cause the model editor to display the contents of the element (expand), or hide them
(collapse).

8. Double-clicking an element in the model expands it to display its contents, and in
addition causes the editor to center the view on the model and zoom in or out so the
model fits in the view.

Zoom-in/out

There are various methods for zooming in and out:

8. Double-clicking an element in the model editor will cause the editor to zoom in/out and
center on the element (in addition to expand if applicable).

9. Double-clicking an element in the outline is similar to double clicking in the editor. This
method is useful when we want to move directly to part of the model which is not in the
current scope of the display.

10.The toolbar provides buttons for zoom-in (), and out ().

Zoom works slightly differently for data-elements. Double-clicking will only function when
performed on the top data element, and not on any of its descendant data elements.

Undo/Redo

The model editor provides full Undo/Redo functionality. This allows you to try out different
modeling strategies, making quick changes to the model, without the fear of losing working
functionality. Undo/Redo is available throughout an editing session, as long as the model editor
window is open (saving and running the application does not prevent a later Undo)..

Undo/Redo functionality is available through the Edit menu as well as through [CTRL-Z]/
[CTRL-Y] keyboard shortcuts.

The Outline

The Outline pane, which appears to the left of the model editor, provides a different view of the
application model, as a hierarchical tree view of the elements making up the complete model.
The outline is always synchronized with and reflects the hierarchical nature of the model itself
(elements containing other elements, and so on).

Synchronization with the Model Editor

The selected item in the Outline is always kept in sync with the selected element in the model
editor. Selecting in one will always select the matching item in the other.

Double-Click Behavior

Double-clicking a model in the outline will locate and zoom to it in the current model editor.

This is useful when trying to zoom to a specific element (especially in complex model
hierarchies).

Drag-and-Drop Behavior

Dragging a model from the outline and dropping it into the editor will reuse the model, which
means that under certain restrictions (which will be covered in later stages of the tutorial),
functionality which has already been modeled can be used again, instead of having to remodel it
from scratch.

In the case of reuse, the same element appears multiple times (at different locations) in the
outline tree. There are however situations where separate, unrelated models share the same
name; this is possible when they are in different packages (see the section regarding Repository
Explorer for further details).

The Repository Explorer

The Repository Explorer, which appears to the left of the model editor, provides a complete list
of all the models making up an application.

Finding your way in the Repository

The repository is organized hierarchically into Packages (and sub-packages), which group the
models into functional categories. Packages are created automatically when certain templates
(System, View, Button) are used, but you can always create additional packages and move
models from one package to another to organize them as you see fit. When modeling, new
elements are automatically created in the same package as the parent model to which they are
added.

In order to locate, in the repository, the model you are currently editing, you can use the
following shortcut:

Right-click the element in the editor.

Select the Show in Repository Explorer option from the context menu.

Double-click Behavior

Double-clicking a model in the repository will open it in a new model editor window. When
working on complex model hierarchies, you may use this to open and edit a specific sub-model.

Drag-and-drop Behavior

Dragging a model from the repository and dropping it into the editor will reuse the model
(similar to dragging from the Outline). The target model editor must be part of the same project
as the source model.

Drag-and-drop inside the repository is also possible, resulting in the model being moved from
one package to another.

The Repository Explorer vs. the Outline

Although both the repository and the outline display a project’s content in a hierarchical manner,
there are quite a few differences between them, mainly:

Repository Explorer Outline

The hierarchy displays all the models in
all the projects.

The hierarchy maps to and is in sync with
the current model editor. Only the elements

which make up the current model are
displayed.

Reused models appear only once Reused models appear as many times as
they are used in the current model.

Unused models appear in the repository
and may be used again

Unused models do not appear in the outline,
since they are not part of the current model.

The name displayed for each model is the
Model Name.

The name displayed for each model is the
Element Name.

The Embedded Application and Database Servers

Tersus includes a bundled, lightweight Application & Database Server, which can be used to
view and test the modeled application at each stage of the modeling process.

The embedded servers are controled through the studio's toolbar:

 Launch the application, in the application server and open the browser.

 Stop the application, from running in the application server.

 Show the application log file in a text editor window.

Try to view your application, as follows:

Click the button to start the application in the server, and open it in a browser.
You can switch back to the studio, change your modeling, and after saving your changes, if you
switch back to the browser it will refresh automatically to apply your latest changes to the
application model and database structures.

Appendix B – Visual Debugging

The Tersus Visual Programming Platform
allows you to trace the execution of the
application visually with the same diagrams
used to define it, making it easier to understand
the business logic and detect bugs.

When working in trace mode, the Tersus Server
records every step during the application’s
execution, which can then be played back to
view the flow of the application and the value of
each data element.

Unlike regular debuggers, which allow you to
only move forward, the Tersus tracing function
acts like a “time machine,” allowing you to
move back and forth along the execution. If you
reach a point where something looks erroneous,
you can trace back to locate the root cause of
the improper behavior.

On line documentation of this feature is available here.
Created on 02/13/11-17:24

http://www.tersus.com/#Id=46

	Stage 1 - Introduction
	About the Tersus Platform
	About this Tutorial
	Document Conventions

	Using the Tutorial
	The Sample Application

	Stage 2 – Modeling a Basic Display
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	The Tersus Studio
	Create a Simple Web Application
	Start Modeling – Create a Form for Entering a Requisition
	Create a View (Open Requisitions)
	Add a Button (New Requisition)
	Create a Popup (Enter New Requisition)
	Add Display Elements to the Popup
	Rename a model

	Completing Stage 2
	Importing a Sample Project

	See It Live

	Stage 3 – Modeling the Logic behind the Screen
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	Model Application Logic
	Define a Data Structure
	Use a Process Template (to generate a record identifier)
	Create a Flow
	Use a Display Data Element (to retrieve user input)
	Use the Insert Template (to store data in the database)
	Use the Close Window Template (and make sure processes occur in the right order)

	Completing Stage 3
	See It Live

	Stage 4 – Modeling a Simple Table Display
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	Model a Tabular Display of Data
	Create a Table Display
	Reuse a Data Structure to Define Table Contents
	Use Action models to Define a Process (populating the display table with data from the database)
	Define a Sub-Process (generating the table data element in memory)
	Use the Find template (to retrieve data from the database)
	Use a Display Data Element (to define the data type & create the table data element)
	Output Data from the Sub-Process
	Use a Display Data Element (to output data to the display)
	Reuse the Action Process (to refresh the table display)

	Completing Stage 4
	See It Live

	Stage 5 – Modeling Choosers and Using Constants
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	Model a Chooser
	Use a Row Element for Better Formatting (of the popup display)
	Add a Chooser Display (to the popup)
	Create an Initialization Process (that populates the chooser with values)
	Use Constants (to define the values displayed in the chooser)
	Add a Field to the Data Structure
	Reuse Means Faster Modeling (display & database structure are automatically updated)

	Completing Stage 5
	See It Live

	Stage 6 – Modeling an Additional View and Updating Data
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Add a View to the Model
	Reuse a Display Element (Requisition List)
	Recreate a Process when it cannot be Reused in full (to populate the requisition list)
	Add a Button (that updates an existing record, marking it Approved)
	Retrieve the Selected Row from a Table Display
	Change a Field’s Value
	Commit the Updated Record to the Database and Refresh the Table Display

	Completing Stage 6
	See It Live

	Stage 7 – Re-factoring - Changing a Process to Enhance Reusability
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	Re-factor an Existing Model
	Group Reusable Elements in a Process
	Finish Re-factoring (replacing elements and flow with the new process)
	Reuse part of the Re-factored Model (Cancel Requisition)

	Completing Stage 7
	See It Live

	Stage 8 – Filtering Retrieved Data
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Add a Trigger to the Find Process (to specify a value by which to filter)
	Use Remove Flow (to clear the table)
	Opening Models in a Separate Editor Window
	Remove an Element from the Model
	Understanding Model Packaging and Naming
	Use the Advanced Find template (to filter records using a complex criteria)

	Completing Stage 8
	See It Live

	Stage 9 – Arranging Views into Perspectives
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Add a Perspective (Employee)
	Remove the Default Perspective
	Add an additional Perspective (Manager)

	Completing Stage 9
	See It Live

	Stage 10 – Importing Data from Excel
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Use a File Input Field (to select the spreadsheet file)
	Use a Load Excel Table Template (to extract data rows)
	Define the Data Structure of Rows extracted from the Spreadsheet
	Using a Text Manipulation Template (to concatenate text values)
	Completing the Import process

	Completing Stage 10
	See It Live

	Stage 11 – Controlling Table Display
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Use a Table Template
	Use Number/Text/Date Display Templates
	Populate the Table (with requisitions)

	Completing Stage 11
	See It Live

	Stage 12 – Controlling Application Flow
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Use a Branch Template
	Use an Alert Template (to display an alert to the user)
	Display a Popup Conditionally

	Completing Stage 12
	See It Live

	Stage 13 – Modeling Relational Data
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	Use a Chooser Based on a Data Structure
	Use a Service Template (when a process must run on the server)
	Define a Database Record (for the purchase order)
	Positioning an Ancestor Reference Correctly (not in a service)
	Populate the Purchase Order Record (with purchase order details)
	Update the Requisition
	Use a <Done> Exit (to specify the order of execution)

	Completing Stage 13
	See It Live

	Stage 14 – Displaying Multiple (Linked) Tables
	Stage Goals
	Tersus Concepts Covered
	Application Functionality Modeled

	User Modeling
	<On Click> Process (to execute a process when a row is clicked)
	Add a Process (to calculate PO aggregates for each requisition)
	Use a Count Template (to count the number of records found by Find)
	Use a Sum Template (to calculate the total price of a requisition)
	Use a Refresh Template (to refresh data in your display)

	Completing Stage 14
	See It Live

	Appendix A – Tersus Studio Features and Tools
	Appendix Goals
	The Eclipse Platform
	Creating a New Project
	Familiarizing Yourself with the Model Editor
	The Palette
	Inserting a New Element to the Model
	Selecting an Element
	Moving an element
	Resizing an element
	Drill-down
	Zoom-in/out
	Undo/Redo

	The Outline
	Synchronization with the Model Editor
	Double-Click Behavior
	Drag-and-Drop Behavior

	The Repository Explorer
	Finding your way in the Repository
	Double-click Behavior
	Drag-and-drop Behavior

	The Repository Explorer vs. the Outline
	The Embedded Application and Database Servers

	Appendix B – Visual Debugging

