Connector/J Installation

You can set the CLASSPATH environment variable under Unix, Linux or Mac OS X either locally for a
user within their .profile, . login or other login file. You can also set it globally by editing the global
/etc/profile file.

For example, add the Connector/J driver to your CLASSPATH using one of the following forms,
depending on your command shell:

# Bourne-compatible shell (sh, ksh, bash, zsh):
shell> export CLASSPATH=/path/mysqgl-connector-java-ver-bin.jar:$CLASSPATH

# C shell (csh, tcsh):
shell> setenv CLASSPATH /path/mysqgl-connector-java-ver-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP, Windows Server 2003 and Windows Vista, you set the
environment variable through the System Control Panel.

To use MySQL Connector/J with an application server such as GlassFish, Tomcat or JBoss, read your
vendor's documentation for more information on how to configure third-party class libraries, as most
application servers ignore the CLASSPATH environment variable. For configuration examples for some
J2EE application servers, see Section 21.3.7, “Connection Pooling with Connector/J” Section 21.3.8,
“Load Balancing with Connector/J”, and Section 21.3.9, “Failover with Connector/J”. However, the
authoritative source for JDBC connection pool configuration information for your particular application
server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's . jar file in the WEB- INF/11ib subdirectory of your webapp, as this is a standard location for
third party class libraries in J2EE web applications.

You can also use the MysglDataSource or MysglConnectionPoolDataSource classes in the
com.mysqgl.jdbc.jdbc2.optional package, if your J2EE application server supports or requires
them. Starting with Connector/J 5.0.0, the javax.sqgl .XADataSource interface is implemented
using the com.mysqgl . jdbc.jdbc2.optional .MysglXADataSource class, which supports XA
distributed transactions when used in combination with MySQL server version 5.0.

The various MysglDataSource classes support the following parameters (through standard set
mutators):

* user
¢ password
* serverName (see the previous section about fail-over hosts)
¢ databaseName
* port
21.3.3.3. Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,
or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply
with new standards.

21.3.3.3.1. Upgrading to MySQL Connector/J 5.1.x

« In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when
accessing the result set metadata using ResultSetMetaData.getColumnName (). This behavior
however is not JDBC compliant, and in Connector/J 5.1 this behavior was changed so that the
original table name, rather than the alias, is returned.

The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on
the metadata within ResultSet and ResultSetMetaData.

2630



Connector/J Installation

You can get the alias for a column in a result set by calling
ResultSetMetaData.getColumnLabel (). To use the old noncompliant behavior with
ResultSetMetaData.getColumnName (), use the use01dAliasMetadataBehavior option
and set the value to true.

In Connector/J 5.0.x, the default value of use01dAliasMetadataBehavior was true, butin
Connector/J 5.1 this was changed to a default value of false.

21.3.3.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

« Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character
encoding was not supported by the server, however the JDBC driver could use it, allowing storage of
multiple character sets in 1atinl tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this
functionality, and can not upgrade them to use the official Unicode character support in MySQL
server version 4.1 or newer, add the following property to your connection URL:

useOldUTF8Behavior=true

« Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer). If your
application encounters issues with server-side prepared statements, you can revert to the older
client-side emulated prepared statement code that is still presently used for MySQL servers older
than 4.1.0 with the following connection property:

useServerPrepStmts=false

21.3.3.3.3. Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible.
Maijor changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes
Unicode character sets, server-side prepared statements, sQLState codes returned in error
messages by the server and various performance enhancements that can be enabled or disabled using
configuration properties.

« Unicode Character Sets: See the next section, as well as Section 10.1, “Character Set Support”, for
information on this MySQL feature. If you have something misconfigured, it will usually show up as
an error with a message similarto I1legal mix of collations.

+ Server-side Prepared Statements: Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing using all variants of
Connection.prepareStatement () to determine if it is a supported type of statement
to prepare on the server side, and if it is not supported by the server, it instead prepares
it as a client-side emulated prepared statement. You can disable this feature by passing
emulateUnsupportedPstmts=false in your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the
older client-side emulated prepared statement code that is still presently used for MySQL servers
older than 4.1.0 with the connection property useServerPrepStmts=false.

+ Datetimes with all-zero components (0000-00-00 .. .): These values cannot be represented
reliably in Java. Connector/J 3.0.x always converted them to NULL when being read from a
ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered, as this is the
most correct behavior according to the JDBC and SQL standards. This behavior can be modified
using the zeroDateTimeBehavior configuration property. The permissible values are:

2631



Connector/J Installation

* exception (the default), which throws an SQLException with an SQLState of s1009.
* convertToNull, which returns NULL instead of the date.
* round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString () can be decoupled from this behavior
using noDatetimeStringSync=true (the default value is false) so that you can retrieve the
unaltered all-zero value as a String. Note that this also precludes using any time zone conversions,
therefore the driver will not allow you to enable noDatetimeStringSync and useTimezone at the
same time.

* New SQLState Codes: Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL
server (if supported), which are different from the legacy X/Open state codes that Connector/J
3.0 uses. If connected to a MySQL server older than MySQL-4.1.0 (the oldest version to return
SQLStates as part of the error code), the driver will use a built-in mapping. You can revert to the old
mapping by using the configuration property useSglStateCodes=false.

* ResultSet.getString(): Calling ResultSet.getString () on a BLOB column will now return
the address of the byte [1 array that represents it, instead of a St ring representation of the BLOB.
BLOB values have no character set, so they cannot be converted to java.lang.Strings without
data loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat
asa java.sgl.Clob.

* Debug builds: Starting with Connector/J 3.1.8 a debug build of the driver in a file named mysqgl -
connector-java-version-bin-g.jar is shipped alongside the normal binary jar file that is
named mysql -connector-java-version-bin.jar.

Starting with Connector/J 3.1.9, we do not ship the . class files unbundled, they are only available
in the JAR archives that ship with the driver.

Do not use the debug build of the driver unless instructed to do so when reporting a problem or bug,
as it is not designed to be run in production environments, and will have adverse performance impact
when used. The debug binary also depends on the Aspect/J runtime library, which is located in the
src/lib/aspectirt.jar file that comes with the Connector/J distribution.

21.3.3.4. Installing from the Development Source Tree

Caution

just get MySQL Connector/J up and running on your system, use a standard

A Read this section only if you are interested in helping us test our new code. To
binary release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the
following prerequisites:

» A Bazaar client, to check out the sources from our Launchpad repository (available from http://
bazaar-vcs.org/).

« Apache Ant version 1.7 or newer (available from http://ant.apache.org/).

« JDK 1.4.2 or later. Although MySQL Connector/J can be be used with older JDKs, compiling it from
source requires at least JDK 1.4.2. To build Connector/J 5.1 requires JDK 1.6.x and an older JDK
such as JDK 1.5.x; point your JAVA HOME environment variable at the older installation.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Check out the latest code from the branch that you want with one of the following commands.

2632



